Takeover Quality: Assessing the Effects of Time Budget and Traffic Density with the Help of a Trajectory-Planning Method
In highly automated driving, the driver can engage in a nondriving task but sometimes has to take over control. We argue that current takeover quality measures, such as the maximum longitudinal acceleration, are insufficient because they ignore the criticality of the scenario. This paper proposes a...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2020-01-01
|
Series: | Journal of Advanced Transportation |
Online Access: | http://dx.doi.org/10.1155/2020/6173150 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1832560214254026752 |
---|---|
author | Fabian Doubek Erik Loosveld Riender Happee Joost de Winter |
author_facet | Fabian Doubek Erik Loosveld Riender Happee Joost de Winter |
author_sort | Fabian Doubek |
collection | DOAJ |
description | In highly automated driving, the driver can engage in a nondriving task but sometimes has to take over control. We argue that current takeover quality measures, such as the maximum longitudinal acceleration, are insufficient because they ignore the criticality of the scenario. This paper proposes a novel method of quantifying how well the driver executed an automation-to-manual takeover by comparing human behaviour to optimised behaviour as computed using a trajectory planner. A human-in-the-loop study was carried out in a high-fidelity 6-DOF driving simulator with 25 participants. The takeover required a lane change to avoid roadworks on the ego-lane while taking other traffic into consideration. Each participant encountered six different takeover scenarios, with a different time budget (5 s, 7 s, or 20 s) and traffic density level (low or medium). Results showed that drivers exhibited a considerably higher longitudinal and lateral acceleration than the optimised behaviour, especially in the short time budget scenarios. In scenarios of medium traffic density, the trajectory planner showed a moderate deceleration to let a vehicle in the left lane pass; many participants, on the other hand, did not decelerate before making a lane change, resulting in a dangerous emergency brake of the left-lane vehicle. In conclusion, our results illustrate the value of assessing human takeover behaviour relative to optimised behaviour. Using the trajectory planner, we showed that human drivers are unable to behave optimally in urgent scenarios and that, in some conditions, a medium deceleration, as opposed to a maximal or minimal deceleration, is optimal. |
format | Article |
id | doaj-art-d7f6b28f45b6473799ef627ba426037f |
institution | Kabale University |
issn | 0197-6729 2042-3195 |
language | English |
publishDate | 2020-01-01 |
publisher | Wiley |
record_format | Article |
series | Journal of Advanced Transportation |
spelling | doaj-art-d7f6b28f45b6473799ef627ba426037f2025-02-03T01:28:10ZengWileyJournal of Advanced Transportation0197-67292042-31952020-01-01202010.1155/2020/61731506173150Takeover Quality: Assessing the Effects of Time Budget and Traffic Density with the Help of a Trajectory-Planning MethodFabian Doubek0Erik Loosveld1Riender Happee2Joost de Winter3Department of Cognitive Robotics, Delft University of Technology, Delft, NetherlandsDepartment of Cognitive Robotics, Delft University of Technology, Delft, NetherlandsDepartment of Cognitive Robotics, Delft University of Technology, Delft, NetherlandsDepartment of Cognitive Robotics, Delft University of Technology, Delft, NetherlandsIn highly automated driving, the driver can engage in a nondriving task but sometimes has to take over control. We argue that current takeover quality measures, such as the maximum longitudinal acceleration, are insufficient because they ignore the criticality of the scenario. This paper proposes a novel method of quantifying how well the driver executed an automation-to-manual takeover by comparing human behaviour to optimised behaviour as computed using a trajectory planner. A human-in-the-loop study was carried out in a high-fidelity 6-DOF driving simulator with 25 participants. The takeover required a lane change to avoid roadworks on the ego-lane while taking other traffic into consideration. Each participant encountered six different takeover scenarios, with a different time budget (5 s, 7 s, or 20 s) and traffic density level (low or medium). Results showed that drivers exhibited a considerably higher longitudinal and lateral acceleration than the optimised behaviour, especially in the short time budget scenarios. In scenarios of medium traffic density, the trajectory planner showed a moderate deceleration to let a vehicle in the left lane pass; many participants, on the other hand, did not decelerate before making a lane change, resulting in a dangerous emergency brake of the left-lane vehicle. In conclusion, our results illustrate the value of assessing human takeover behaviour relative to optimised behaviour. Using the trajectory planner, we showed that human drivers are unable to behave optimally in urgent scenarios and that, in some conditions, a medium deceleration, as opposed to a maximal or minimal deceleration, is optimal.http://dx.doi.org/10.1155/2020/6173150 |
spellingShingle | Fabian Doubek Erik Loosveld Riender Happee Joost de Winter Takeover Quality: Assessing the Effects of Time Budget and Traffic Density with the Help of a Trajectory-Planning Method Journal of Advanced Transportation |
title | Takeover Quality: Assessing the Effects of Time Budget and Traffic Density with the Help of a Trajectory-Planning Method |
title_full | Takeover Quality: Assessing the Effects of Time Budget and Traffic Density with the Help of a Trajectory-Planning Method |
title_fullStr | Takeover Quality: Assessing the Effects of Time Budget and Traffic Density with the Help of a Trajectory-Planning Method |
title_full_unstemmed | Takeover Quality: Assessing the Effects of Time Budget and Traffic Density with the Help of a Trajectory-Planning Method |
title_short | Takeover Quality: Assessing the Effects of Time Budget and Traffic Density with the Help of a Trajectory-Planning Method |
title_sort | takeover quality assessing the effects of time budget and traffic density with the help of a trajectory planning method |
url | http://dx.doi.org/10.1155/2020/6173150 |
work_keys_str_mv | AT fabiandoubek takeoverqualityassessingtheeffectsoftimebudgetandtrafficdensitywiththehelpofatrajectoryplanningmethod AT erikloosveld takeoverqualityassessingtheeffectsoftimebudgetandtrafficdensitywiththehelpofatrajectoryplanningmethod AT rienderhappee takeoverqualityassessingtheeffectsoftimebudgetandtrafficdensitywiththehelpofatrajectoryplanningmethod AT joostdewinter takeoverqualityassessingtheeffectsoftimebudgetandtrafficdensitywiththehelpofatrajectoryplanningmethod |