Evolutionary Game Algorithm for Image Segmentation

The traditional two-dimensional Otsu algorithm only considers the limitations of the maximum variance of between-cluster variance of the target class and background class; this paper proposes evolutionary game improved algorithm. Algorithm takes full consideration of own pixel cohesion of target and...

Full description

Saved in:
Bibliographic Details
Main Authors: Jin Zhong, Hao Wu
Format: Article
Language:English
Published: Wiley 2017-01-01
Series:Journal of Electrical and Computer Engineering
Online Access:http://dx.doi.org/10.1155/2017/8746010
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The traditional two-dimensional Otsu algorithm only considers the limitations of the maximum variance of between-cluster variance of the target class and background class; this paper proposes evolutionary game improved algorithm. Algorithm takes full consideration of own pixel cohesion of target and background. It can meet the same of maximum variance of between-cluster variance. To ensure minimum threshold discriminant function within the variance, this kind of evolutionary game algorithm searching space for optimal solution is applied. Experimental results show that the method proposed in this paper makes the detail of segmentation image syllabify and has better antijamming capability; the improved genetic algorithm which used searching optimal solution has faster convergence speed and better global search capability.
ISSN:2090-0147
2090-0155