Sampled-Data Consensus for High-Order Multiagent Systems under Fixed and Randomly Switching Topology

This paper studies the sampled-data based consensus of multiagent system with general linear time-invariant dynamics. It focuses on looking for a maximum allowable sampling period bound such that as long as the sampling period is less than this bound, there always exist linear consensus protocols so...

Full description

Saved in:
Bibliographic Details
Main Authors: Niu Jie, Li Zhong
Format: Article
Language:English
Published: Wiley 2014-01-01
Series:Discrete Dynamics in Nature and Society
Online Access:http://dx.doi.org/10.1155/2014/598965
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper studies the sampled-data based consensus of multiagent system with general linear time-invariant dynamics. It focuses on looking for a maximum allowable sampling period bound such that as long as the sampling period is less than this bound, there always exist linear consensus protocols solving the consensus problem. Both fixed and randomly switching topologies are considered. For systems under fixed topology, a necessary and sufficient sampling period bound is obtained for single-input multiagent systems, and a sufficient allowable bound is proposed for multi-input systems by solving the H∞ optimal control problem of certain system with uncertainty. For systems under randomly switching topologies, tree-type and complete broadcasting network with Bernoulli packet losses are discussed, and explicit allowable sampling period bounds are, respectively, given based on the unstable eigenvalues of agent’s system matrix and packet loss probability. Numerical examples are given to illustrate the results.
ISSN:1026-0226
1607-887X