Selecting Negative Samples for PPI Prediction Using Hierarchical Clustering Methodology

Protein-protein interactions (PPIs) play a crucial role in cellular processes. In the present work, a new approach is proposed to construct a PPI predictor training a support vector machine model through a mutual information filter-wrapper parallel feature selection algorithm and an iterative and hi...

Full description

Saved in:
Bibliographic Details
Main Authors: J. M. Urquiza, I. Rojas, H. Pomares, J. Herrera, J. P. Florido, O. Valenzuela
Format: Article
Language:English
Published: Wiley 2012-01-01
Series:Journal of Applied Mathematics
Online Access:http://dx.doi.org/10.1155/2012/897289
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832552583795834880
author J. M. Urquiza
I. Rojas
H. Pomares
J. Herrera
J. P. Florido
O. Valenzuela
author_facet J. M. Urquiza
I. Rojas
H. Pomares
J. Herrera
J. P. Florido
O. Valenzuela
author_sort J. M. Urquiza
collection DOAJ
description Protein-protein interactions (PPIs) play a crucial role in cellular processes. In the present work, a new approach is proposed to construct a PPI predictor training a support vector machine model through a mutual information filter-wrapper parallel feature selection algorithm and an iterative and hierarchical clustering to select a relevance negative training set. By means of a selected suboptimum set of features, the constructed support vector machine model is able to classify PPIs with high accuracy in any positive and negative datasets.
format Article
id doaj-art-a195f68307cb486da82e41cd3b8f41ce
institution Kabale University
issn 1110-757X
1687-0042
language English
publishDate 2012-01-01
publisher Wiley
record_format Article
series Journal of Applied Mathematics
spelling doaj-art-a195f68307cb486da82e41cd3b8f41ce2025-02-03T05:58:19ZengWileyJournal of Applied Mathematics1110-757X1687-00422012-01-01201210.1155/2012/897289897289Selecting Negative Samples for PPI Prediction Using Hierarchical Clustering MethodologyJ. M. Urquiza0I. Rojas1H. Pomares2J. Herrera3J. P. Florido4O. Valenzuela5Department of Computer Architecture and Computer Technology, University of Granada, 18017 Granada, SpainDepartment of Computer Architecture and Computer Technology, University of Granada, 18017 Granada, SpainDepartment of Computer Architecture and Computer Technology, University of Granada, 18017 Granada, SpainDepartment of Computer Architecture and Computer Technology, University of Granada, 18017 Granada, SpainDepartment of Computer Architecture and Computer Technology, University of Granada, 18017 Granada, SpainDepartment of Applied Mathematics, University of Granada, 18017 Granada, SpainProtein-protein interactions (PPIs) play a crucial role in cellular processes. In the present work, a new approach is proposed to construct a PPI predictor training a support vector machine model through a mutual information filter-wrapper parallel feature selection algorithm and an iterative and hierarchical clustering to select a relevance negative training set. By means of a selected suboptimum set of features, the constructed support vector machine model is able to classify PPIs with high accuracy in any positive and negative datasets.http://dx.doi.org/10.1155/2012/897289
spellingShingle J. M. Urquiza
I. Rojas
H. Pomares
J. Herrera
J. P. Florido
O. Valenzuela
Selecting Negative Samples for PPI Prediction Using Hierarchical Clustering Methodology
Journal of Applied Mathematics
title Selecting Negative Samples for PPI Prediction Using Hierarchical Clustering Methodology
title_full Selecting Negative Samples for PPI Prediction Using Hierarchical Clustering Methodology
title_fullStr Selecting Negative Samples for PPI Prediction Using Hierarchical Clustering Methodology
title_full_unstemmed Selecting Negative Samples for PPI Prediction Using Hierarchical Clustering Methodology
title_short Selecting Negative Samples for PPI Prediction Using Hierarchical Clustering Methodology
title_sort selecting negative samples for ppi prediction using hierarchical clustering methodology
url http://dx.doi.org/10.1155/2012/897289
work_keys_str_mv AT jmurquiza selectingnegativesamplesforppipredictionusinghierarchicalclusteringmethodology
AT irojas selectingnegativesamplesforppipredictionusinghierarchicalclusteringmethodology
AT hpomares selectingnegativesamplesforppipredictionusinghierarchicalclusteringmethodology
AT jherrera selectingnegativesamplesforppipredictionusinghierarchicalclusteringmethodology
AT jpflorido selectingnegativesamplesforppipredictionusinghierarchicalclusteringmethodology
AT ovalenzuela selectingnegativesamplesforppipredictionusinghierarchicalclusteringmethodology