Topological Design and Modeling of 3D-Printed Grippers for Combined Precision and Coarse Robotics Assembly

This study presents a topological design and modeling framework for 3D-printed robotic grippers, tailored for combined precision and coarse robotics assembly. The proposed methodology leverages topology optimization to develop multi-scale-compliant mechanisms, comprising a symmetrical continuum stru...

Full description

Saved in:
Bibliographic Details
Main Authors: Mohammad Mayyas, Naveen Kumar, Zahabul Islam, Mohammed Abouheaf, Muteb Aljasem
Format: Article
Language:English
Published: MDPI AG 2025-04-01
Series:Actuators
Subjects:
Online Access:https://www.mdpi.com/2076-0825/14/4/192
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study presents a topological design and modeling framework for 3D-printed robotic grippers, tailored for combined precision and coarse robotics assembly. The proposed methodology leverages topology optimization to develop multi-scale-compliant mechanisms, comprising a symmetrical continuum structure of five beams. The proposed methodology centers on the hybrid kinematics for precision and coarse operations of the gripper, parametrizing beam deformations in response to a defined set of boundary conditions and varying input loads. The research employs topology analysis to draw a clear correlation between input load and resultant motion, with a particular emphasis on the mechanism’s capacity to integrate both fine and coarse movements efficiently. Additionally, the paper pioneers an innovative solution to the ubiquitous point-contact problem encountered in grasping, intricately weaving it with the stiffness matrix. The overarching aim remains to provide a streamlined design methodology, optimized for manufacturability, by harnessing the capabilities of contemporary 3D fabrication techniques. This multifaceted approach, underpinned by the multiscale grasping method, promises to significantly advance the domain of robotic gripping and manipulation across applications such as micro-assembly, biomedical manipulation, and industrial robotics.
ISSN:2076-0825