Multi-Innovation Stochastic Gradient Parameter and State Estimation Algorithm for Dual-Rate State-Space Systems with d-Step Time Delay
This paper presents a multi-innovation stochastic gradient parameter estimation algorithm for dual-rate sampled state-space systems with d-step time delay by the multi-innovation identification theory. Considering the stochastic disturbance in industrial process and using the gradient search, a mult...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2020-01-01
|
Series: | Complexity |
Online Access: | http://dx.doi.org/10.1155/2020/6128697 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper presents a multi-innovation stochastic gradient parameter estimation algorithm for dual-rate sampled state-space systems with d-step time delay by the multi-innovation identification theory. Considering the stochastic disturbance in industrial process and using the gradient search, a multi-innovation stochastic gradient algorithm is proposed through expanding the scalar innovation into an innovation vector in order to obtain more accurate parameter estimates. The difficulty of identification is that the information vector in the identification model contains the unknown states. The proposed algorithm uses the state estimates of the observer instead of the state variables to realize the parameter estimation. The simulation results indicate that the proposed algorithm works well. |
---|---|
ISSN: | 1076-2787 1099-0526 |