Rings with a finite set of nonnilpotents

Let R be a ring and let N denote the set of nilpotent elements of R. Let n be a nonnegative integer. The ring R is called a θn-ring if the number of elements in R which are not in N is at most n. The following theorem is proved: If R is a θn-ring, then R is nil or R is finite. Conversely, if R is a...

Full description

Saved in:
Bibliographic Details
Main Authors: Mohan S. Putcha, Adil Yaqub
Format: Article
Language:English
Published: Wiley 1979-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Subjects:
Online Access:http://dx.doi.org/10.1155/S0161171279000120
Tags: Add Tag
No Tags, Be the first to tag this record!