Overexpressed Neuropilin-1 in Endothelial Cells Promotes Endothelial Permeability through Interaction with ANGPTL4 and VEGF in Kawasaki Disease

Disrupted endothelial permeability plays a crucial role in the vasculitis pathogenesis of Kawasaki disease (KD), which leads to pathological vascular leak and facilitates inflammatory cell infiltration in vascular lesions; however, the mechanisms involved in the development of endothelial barrier dy...

Full description

Saved in:
Bibliographic Details
Main Authors: Junhua Huang, Shuwan Zhang
Format: Article
Language:English
Published: Wiley 2021-01-01
Series:Mediators of Inflammation
Online Access:http://dx.doi.org/10.1155/2021/9914071
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832546238482874368
author Junhua Huang
Shuwan Zhang
author_facet Junhua Huang
Shuwan Zhang
author_sort Junhua Huang
collection DOAJ
description Disrupted endothelial permeability plays a crucial role in the vasculitis pathogenesis of Kawasaki disease (KD), which leads to pathological vascular leak and facilitates inflammatory cell infiltration in vascular lesions; however, the mechanisms involved in the development of endothelial barrier dysfunction during KD vasculitis are still largely unclear. Here, we found that sera from patients with KD can induce endothelial cell (EC) hyperpermeability compared to sera from healthy controls. We observed that serum vascular endothelial growth factor (VEGF) levels were increased in KD patients and sera from KD patients upregulated the expression of VEGF receptor 2 (VEGFR2) and neuropilin-1 (NRP1) in human coronary artery endothelial cells (HCAECs). Intriguingly, compared with silence of VEGFR2 in HCAECs, NRP1 silence resulted in a marked decrease in EC permeability. Furthermore, soluble NRP1 (sNRP1) remarkably reduced the stimulation of EC permeability by sera from KD patients compared with bevacizumab treatment. Importantly, we showed that besides VEGF, angiopoietin-like-4 (ANGPTL4), a NRP1-binding vasoactive factor, was also increased in KD and contributed to the EC permeability in KD conditions. In addition, levels of both ANGPTL4 and VEGF were inversely correlated with albumin levels in the serum of KD patients. Collectively, the data demonstrated that overexpressed NRP1, along with upregulated VEGFR2, in HCAECs treated with KD sera promotes endothelial permeability via interaction with the increased ANGPTL4 and VEGF in KD. Neutralization of hyperpermeability factors by sNRP1 may be a novel therapeutic strategy for KD vasculitis.
format Article
id doaj-art-f59f1137962b4f42a0c5bdd5b30d32ba
institution Kabale University
issn 0962-9351
1466-1861
language English
publishDate 2021-01-01
publisher Wiley
record_format Article
series Mediators of Inflammation
spelling doaj-art-f59f1137962b4f42a0c5bdd5b30d32ba2025-02-03T07:23:32ZengWileyMediators of Inflammation0962-93511466-18612021-01-01202110.1155/2021/99140719914071Overexpressed Neuropilin-1 in Endothelial Cells Promotes Endothelial Permeability through Interaction with ANGPTL4 and VEGF in Kawasaki DiseaseJunhua Huang0Shuwan Zhang1Medical Technology College, Xi’an Medical University, Xi’an, Shaanxi Province 710021, ChinaDepartment of Clinical Laboratory, The Affiliated Children’s Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi Province 710003, ChinaDisrupted endothelial permeability plays a crucial role in the vasculitis pathogenesis of Kawasaki disease (KD), which leads to pathological vascular leak and facilitates inflammatory cell infiltration in vascular lesions; however, the mechanisms involved in the development of endothelial barrier dysfunction during KD vasculitis are still largely unclear. Here, we found that sera from patients with KD can induce endothelial cell (EC) hyperpermeability compared to sera from healthy controls. We observed that serum vascular endothelial growth factor (VEGF) levels were increased in KD patients and sera from KD patients upregulated the expression of VEGF receptor 2 (VEGFR2) and neuropilin-1 (NRP1) in human coronary artery endothelial cells (HCAECs). Intriguingly, compared with silence of VEGFR2 in HCAECs, NRP1 silence resulted in a marked decrease in EC permeability. Furthermore, soluble NRP1 (sNRP1) remarkably reduced the stimulation of EC permeability by sera from KD patients compared with bevacizumab treatment. Importantly, we showed that besides VEGF, angiopoietin-like-4 (ANGPTL4), a NRP1-binding vasoactive factor, was also increased in KD and contributed to the EC permeability in KD conditions. In addition, levels of both ANGPTL4 and VEGF were inversely correlated with albumin levels in the serum of KD patients. Collectively, the data demonstrated that overexpressed NRP1, along with upregulated VEGFR2, in HCAECs treated with KD sera promotes endothelial permeability via interaction with the increased ANGPTL4 and VEGF in KD. Neutralization of hyperpermeability factors by sNRP1 may be a novel therapeutic strategy for KD vasculitis.http://dx.doi.org/10.1155/2021/9914071
spellingShingle Junhua Huang
Shuwan Zhang
Overexpressed Neuropilin-1 in Endothelial Cells Promotes Endothelial Permeability through Interaction with ANGPTL4 and VEGF in Kawasaki Disease
Mediators of Inflammation
title Overexpressed Neuropilin-1 in Endothelial Cells Promotes Endothelial Permeability through Interaction with ANGPTL4 and VEGF in Kawasaki Disease
title_full Overexpressed Neuropilin-1 in Endothelial Cells Promotes Endothelial Permeability through Interaction with ANGPTL4 and VEGF in Kawasaki Disease
title_fullStr Overexpressed Neuropilin-1 in Endothelial Cells Promotes Endothelial Permeability through Interaction with ANGPTL4 and VEGF in Kawasaki Disease
title_full_unstemmed Overexpressed Neuropilin-1 in Endothelial Cells Promotes Endothelial Permeability through Interaction with ANGPTL4 and VEGF in Kawasaki Disease
title_short Overexpressed Neuropilin-1 in Endothelial Cells Promotes Endothelial Permeability through Interaction with ANGPTL4 and VEGF in Kawasaki Disease
title_sort overexpressed neuropilin 1 in endothelial cells promotes endothelial permeability through interaction with angptl4 and vegf in kawasaki disease
url http://dx.doi.org/10.1155/2021/9914071
work_keys_str_mv AT junhuahuang overexpressedneuropilin1inendothelialcellspromotesendothelialpermeabilitythroughinteractionwithangptl4andvegfinkawasakidisease
AT shuwanzhang overexpressedneuropilin1inendothelialcellspromotesendothelialpermeabilitythroughinteractionwithangptl4andvegfinkawasakidisease