On the largest analytic set for cyclic operators
We describe the set of analytic bounded point evaluations for an arbitrary cyclic bounded linear operator T on a Hilbert space ℋ; some related consequences are discussed. Furthermore, we show that two densely similar cyclic Banach-space operators possessing Bishop's property (β) have equal appr...
Saved in:
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2003-01-01
|
Series: | International Journal of Mathematics and Mathematical Sciences |
Online Access: | http://dx.doi.org/10.1155/S0161171203209042 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We describe the set of analytic bounded point evaluations for an
arbitrary cyclic bounded linear operator T on a Hilbert space
ℋ; some related consequences are discussed. Furthermore, we
show that two densely similar cyclic Banach-space operators
possessing Bishop's property (β) have equal approximate point spectra. |
---|---|
ISSN: | 0161-1712 1687-0425 |