Lutein Suppresses the Maturation and Function of Bone Marrow-Derived Dendritic Cells

Lutein, nonivamide, and baicalein, organic compounds found in a variety of plants, are known to exert anti-inflammatory effects in animal cells. Dendritic cells (DCs) are professional antigen-presenting cells (APCs) and link the innate and adaptive immune systems. DCs can be directed into fully mat...

Full description

Saved in:
Bibliographic Details
Main Authors: Seulah Choi, Tae Sung Kim, Hui Xuan Lim
Format: Article
Language:English
Published: HH Publisher 2024-04-01
Series:Progress in Microbes and Molecular Biology
Online Access:https://journals.hh-publisher.com/index.php/pmmb/article/view/942
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832541449148694528
author Seulah Choi
Tae Sung Kim
Hui Xuan Lim
author_facet Seulah Choi
Tae Sung Kim
Hui Xuan Lim
author_sort Seulah Choi
collection DOAJ
description Lutein, nonivamide, and baicalein, organic compounds found in a variety of plants, are known to exert anti-inflammatory effects in animal cells. Dendritic cells (DCs) are professional antigen-presenting cells (APCs) and link the innate and adaptive immune systems. DCs can be directed into fully mature APCs by exposure to bacterial or viral components, resulting in inflammatory situations. The manipulation of DC maturation provides a strategy for the treatment of allergic and inflammatory diseases. In this study, we evaluated the effects of lutein, nonivamide, and baicalein on the maturation and activation of DCs. Compared to nonivamide and baicalein, lutein significantly and dose-dependently reduced the levels of maturation-associated cell surface markers, including CD40, co-stimulatory molecule CD86, and major histocompatibility complex class II (I-Ab) molecule in lipopolysaccharide (LPS)-stimulated DCs. Lutein also decreased IL-12p40 and IL-6 gene expression and secretion in LPS-stimulated DCs. Furthermore, lutein significantly enhanced the endocytic ability of LPS-stimulated DCs. These results demonstrated that lutein may exhibit immunosuppressive activity by inhibiting the phenotypic and functional maturation of DCs, and provide new evidence for the value of lutein in the search for novel therapeutic agents in the treatment of inflammatory diseases.
format Article
id doaj-art-f35770c6dfd441e8a2288c914b9c65ad
institution Kabale University
issn 2637-1049
language English
publishDate 2024-04-01
publisher HH Publisher
record_format Article
series Progress in Microbes and Molecular Biology
spelling doaj-art-f35770c6dfd441e8a2288c914b9c65ad2025-02-04T08:39:39ZengHH PublisherProgress in Microbes and Molecular Biology2637-10492024-04-017110.36877/pmmb.a0000441Lutein Suppresses the Maturation and Function of Bone Marrow-Derived Dendritic CellsSeulah ChoiTae Sung KimHui Xuan Lim Lutein, nonivamide, and baicalein, organic compounds found in a variety of plants, are known to exert anti-inflammatory effects in animal cells. Dendritic cells (DCs) are professional antigen-presenting cells (APCs) and link the innate and adaptive immune systems. DCs can be directed into fully mature APCs by exposure to bacterial or viral components, resulting in inflammatory situations. The manipulation of DC maturation provides a strategy for the treatment of allergic and inflammatory diseases. In this study, we evaluated the effects of lutein, nonivamide, and baicalein on the maturation and activation of DCs. Compared to nonivamide and baicalein, lutein significantly and dose-dependently reduced the levels of maturation-associated cell surface markers, including CD40, co-stimulatory molecule CD86, and major histocompatibility complex class II (I-Ab) molecule in lipopolysaccharide (LPS)-stimulated DCs. Lutein also decreased IL-12p40 and IL-6 gene expression and secretion in LPS-stimulated DCs. Furthermore, lutein significantly enhanced the endocytic ability of LPS-stimulated DCs. These results demonstrated that lutein may exhibit immunosuppressive activity by inhibiting the phenotypic and functional maturation of DCs, and provide new evidence for the value of lutein in the search for novel therapeutic agents in the treatment of inflammatory diseases. https://journals.hh-publisher.com/index.php/pmmb/article/view/942
spellingShingle Seulah Choi
Tae Sung Kim
Hui Xuan Lim
Lutein Suppresses the Maturation and Function of Bone Marrow-Derived Dendritic Cells
Progress in Microbes and Molecular Biology
title Lutein Suppresses the Maturation and Function of Bone Marrow-Derived Dendritic Cells
title_full Lutein Suppresses the Maturation and Function of Bone Marrow-Derived Dendritic Cells
title_fullStr Lutein Suppresses the Maturation and Function of Bone Marrow-Derived Dendritic Cells
title_full_unstemmed Lutein Suppresses the Maturation and Function of Bone Marrow-Derived Dendritic Cells
title_short Lutein Suppresses the Maturation and Function of Bone Marrow-Derived Dendritic Cells
title_sort lutein suppresses the maturation and function of bone marrow derived dendritic cells
url https://journals.hh-publisher.com/index.php/pmmb/article/view/942
work_keys_str_mv AT seulahchoi luteinsuppressesthematurationandfunctionofbonemarrowderiveddendriticcells
AT taesungkim luteinsuppressesthematurationandfunctionofbonemarrowderiveddendriticcells
AT huixuanlim luteinsuppressesthematurationandfunctionofbonemarrowderiveddendriticcells