Raman Spectroscopic Analyses of Jaw Periosteal Cell Mineralization

To achieve safer patient treatments, serum-free cell culture conditions have to be established for cell therapies. In previous studies, we demonstrated that serum-free culture favored the proliferation of MSCA-1+ osteoprogenitors derived from the jaw periosteum. In this study, the in vitro formation...

Full description

Saved in:
Bibliographic Details
Main Authors: Eva Brauchle, Daniel Carvajal Berrio, Melanie Rieger, Katja Schenke-Layland, Siegmar Reinert, Dorothea Alexander
Format: Article
Language:English
Published: Wiley 2017-01-01
Series:Stem Cells International
Online Access:http://dx.doi.org/10.1155/2017/1651376
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:To achieve safer patient treatments, serum-free cell culture conditions have to be established for cell therapies. In previous studies, we demonstrated that serum-free culture favored the proliferation of MSCA-1+ osteoprogenitors derived from the jaw periosteum. In this study, the in vitro formation of bone-specific matrix by MSCA-1+ jaw periosteal cells (JPCs, 3 donors) was assessed and compared under serum-free and serum-containing media conditions using the marker-free Raman spectroscopy. Based on a standard fluorescence assay, JPCs from one patient were not able to mineralize under serum-containing culture conditions, whereas the other cells showed similar mineralization levels under both conditions. Raman spectra from mineralizing MSCA-1+ JPCs revealed higher levels of hydroxyapatite formation and higher mineral to matrix ratios under serum-free culture conditions. Higher carbonate to phosphate ratios and higher crystallinity in JPCs cultured under serum-containing conditions indicated immature bone formation. Due to reduced collagen production under serum-free conditions, we obtained significant differences in collagen maturity and proline to hydroxyproline ratios compared to serum-free conditions. We conclude that Raman spectroscopy is a useful tool for the assessment and noninvasive monitoring of in vitro mineralization of osteoprogenitor cells. Further studies should extend this knowledge and improve JPC mineralization by optimizing culture conditions.
ISSN:1687-966X
1687-9678