Rotary Panoramic and Full-Depth-of-Field Imaging System for Pipeline Inspection

To address the adaptability and insufficient imaging quality of conventional in-pipe imaging techniques for irregular pipelines or unstructured scenes, this study proposes a novel radial rotating full-depth-of-field focusing imaging system designed to adapt to the structural complexities of irregula...

Full description

Saved in:
Bibliographic Details
Main Authors: Qiang Xing, Xueqin Zhao, Kun Song, Jiawen Jiang, Xinhao Wang, Yuanyuan Huang, Haodong Wei
Format: Article
Language:English
Published: MDPI AG 2025-04-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/25/9/2860
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:To address the adaptability and insufficient imaging quality of conventional in-pipe imaging techniques for irregular pipelines or unstructured scenes, this study proposes a novel radial rotating full-depth-of-field focusing imaging system designed to adapt to the structural complexities of irregular pipelines, which can effectively acquire tiny details with a depth of 300–960 mm inside the pipeline. Firstly, a fast full-depth-of-field imaging method driven by depth features is proposed. Secondly, a full-depth rotating imaging apparatus is developed, incorporating a zoom camera, a miniature servo rotation mechanism, and a control system, enabling 360° multi-view angles and full-depth-of-field focusing imaging. Finally, full-depth-of-field focusing imaging experiments are carried out for pipelines with depth-varying characteristics. The results demonstrate that the imaging device can acquire depth data of the pipeline interior and rapidly obtain high-definition characterization sequence images of the inner pipeline wall. In the depth-of-field segmentation with multiple view angles, the clarity of the fused image is improved by 75.3% relative to a single frame, and the SNR and PSNR reach 6.9 dB and 26.3 dB, respectively. Compared to existing pipeline closed-circuit television (CCTV) and other in-pipeline imaging techniques, the developed rotating imaging system exhibits high integration, faster imaging capabilities, and adaptive capacity. This system provides an adaptive imaging solution for detecting defects on the inner surfaces of irregular pipelines, offering significant potential for practical applications in pipeline inspection and maintenance.
ISSN:1424-8220