Imbalanced Data Sets Classification Based on SVM for Sand-Dust Storm Warning
In view of the SVM classification for the imbalanced sand-dust storm data sets, this paper proposes a hybrid self-adaptive sampling method named SRU-AIBSMOTE algorithm. This method can adaptively adjust neighboring selection strategy based on the internal distribution of sample sets. It produces vir...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2015-01-01
|
Series: | Discrete Dynamics in Nature and Society |
Online Access: | http://dx.doi.org/10.1155/2015/562724 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In view of the SVM classification for the imbalanced sand-dust storm data sets, this paper proposes a hybrid self-adaptive sampling method named SRU-AIBSMOTE algorithm. This method can adaptively adjust neighboring selection strategy based on the internal distribution of sample sets. It produces virtual minority class instances through randomized interpolation in the spherical space which consists of minority class instances and their neighbors. The random undersampling is also applied to undersample the majority class instances for removal of redundant data in the sample sets. The comparative experimental results on the real data sets from Yanchi and Tongxin districts in Ningxia of China show that the SRU-AIBSMOTE method can obtain better classification performance than some traditional classification methods. |
---|---|
ISSN: | 1026-0226 1607-887X |