Imbalanced Data Sets Classification Based on SVM for Sand-Dust Storm Warning

In view of the SVM classification for the imbalanced sand-dust storm data sets, this paper proposes a hybrid self-adaptive sampling method named SRU-AIBSMOTE algorithm. This method can adaptively adjust neighboring selection strategy based on the internal distribution of sample sets. It produces vir...

Full description

Saved in:
Bibliographic Details
Main Authors: Yonghua Xie, Yurong Liu, Qingqiu Fu
Format: Article
Language:English
Published: Wiley 2015-01-01
Series:Discrete Dynamics in Nature and Society
Online Access:http://dx.doi.org/10.1155/2015/562724
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In view of the SVM classification for the imbalanced sand-dust storm data sets, this paper proposes a hybrid self-adaptive sampling method named SRU-AIBSMOTE algorithm. This method can adaptively adjust neighboring selection strategy based on the internal distribution of sample sets. It produces virtual minority class instances through randomized interpolation in the spherical space which consists of minority class instances and their neighbors. The random undersampling is also applied to undersample the majority class instances for removal of redundant data in the sample sets. The comparative experimental results on the real data sets from Yanchi and Tongxin districts in Ningxia of China show that the SRU-AIBSMOTE method can obtain better classification performance than some traditional classification methods.
ISSN:1026-0226
1607-887X