Synthesis and evaluation of nitrochromene derivatives as potential antileishmanial therapeutics through biological and computational studies
Abstract Leishmaniasis is a parasitic disease caused by protozoan organisms belonging to the Leishmania genus, affecting many individuals worldwide, with the burden surpassing one million cases. This disease leads to considerable morbidity and mortality, predominantly within tropical and subtropical...
Saved in:
Main Authors: | , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Nature Portfolio
2025-01-01
|
Series: | Scientific Reports |
Subjects: | |
Online Access: | https://doi.org/10.1038/s41598-025-86035-6 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1832585815764500480 |
---|---|
author | Niloofar Javid Ali Asadipour Ehsan Salarkia Mohammad Amin Langarizadeh Fatemeh Sharifi Mohammad Mahdavi Bagher Amirheidari Aida Iraji Hojjat Rezaiezadeh Gholamreza Hassanpour Yaghoub Pourshojaei |
author_facet | Niloofar Javid Ali Asadipour Ehsan Salarkia Mohammad Amin Langarizadeh Fatemeh Sharifi Mohammad Mahdavi Bagher Amirheidari Aida Iraji Hojjat Rezaiezadeh Gholamreza Hassanpour Yaghoub Pourshojaei |
author_sort | Niloofar Javid |
collection | DOAJ |
description | Abstract Leishmaniasis is a parasitic disease caused by protozoan organisms belonging to the Leishmania genus, affecting many individuals worldwide, with the burden surpassing one million cases. This disease leads to considerable morbidity and mortality, predominantly within tropical and subtropical regions. The current therapeutic options for leishmaniasis are far from ideal, as they fail to achieve a level of efficacy that can be deemed universally effective. The primary drawbacks of existing treatments include severe side effects, substantial toxicity, high financial costs, extended treatment regimens, and the discomfort associated with injectable forms of administration. Additionally, the growing issue of drug resistance presents a formidable challenge, further complicating disease management and control efforts. In light of these limitations, developing new therapeutic agents that can effectively disrupt the parasite’s life cycle at multiple stages is of paramount importance. This study endeavors to address this critical need by focusing on the design and synthesis of a series of novel compounds. Fifteen derivatives incorporating the nitrochromene pharmacophore were meticulously synthesized using the Henry reaction. After synthesizing these derivatives, a comprehensive evaluation of their biological activity against L. tropica was undertaken. This assessment employed both in vitro techniques to directly observe the compounds’ effects on the parasite and in silico methods, specifically molecular docking studies, to predict and analyze the interaction between the synthesized compounds and various target proteins of the parasite. The dual approach of combining experimental and computational methods aims to provide a robust understanding of the compounds’ mechanisms of action and their potential as effective anti-leishmanial agents. This integrative strategy not only enhances the reliability of the findings but also offers valuable insights that could guide future drug development efforts in combating leishmaniasis. |
format | Article |
id | doaj-art-ed9b631dec0c45bc98fec6e8c9b48f37 |
institution | Kabale University |
issn | 2045-2322 |
language | English |
publishDate | 2025-01-01 |
publisher | Nature Portfolio |
record_format | Article |
series | Scientific Reports |
spelling | doaj-art-ed9b631dec0c45bc98fec6e8c9b48f372025-01-26T12:30:35ZengNature PortfolioScientific Reports2045-23222025-01-0115111610.1038/s41598-025-86035-6Synthesis and evaluation of nitrochromene derivatives as potential antileishmanial therapeutics through biological and computational studiesNiloofar Javid0Ali Asadipour1Ehsan Salarkia2Mohammad Amin Langarizadeh3Fatemeh Sharifi4Mohammad Mahdavi5Bagher Amirheidari6Aida Iraji7Hojjat Rezaiezadeh8Gholamreza Hassanpour9Yaghoub Pourshojaei10Department of Medicinal Chemistry, Faculty of Pharmacy, Kerman University of Medical SciencesDepartment of Medicinal Chemistry, Faculty of Pharmacy, Kerman University of Medical SciencesLeishmaniasis Research Center, Kerman University of Medical SciencesDepartment of Medicinal Chemistry, Faculty of Pharmacy, Kerman University of Medical SciencesResearch Center of Tropical and Infectious Diseases, Kerman University of Medical SciencesEndocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical SciencesDepartment of Pharmaceutical Biotechnology, Faculty of Pharmacy, Kerman University of Medical SciencesResearch Center for Traditional Medicine and History of Medicine, Department of Persian Medicine, School of Medicine, Shiraz University of Medical SciencesDepartment of Medicinal Chemistry, School of Pharmacy, Shiraz University of Medical SciencesCenter for Research of Endemic Parasites of Iran (CREPI), Tehran University of Medical SciencesDepartment of Medicinal Chemistry, Faculty of Pharmacy, Kerman University of Medical SciencesAbstract Leishmaniasis is a parasitic disease caused by protozoan organisms belonging to the Leishmania genus, affecting many individuals worldwide, with the burden surpassing one million cases. This disease leads to considerable morbidity and mortality, predominantly within tropical and subtropical regions. The current therapeutic options for leishmaniasis are far from ideal, as they fail to achieve a level of efficacy that can be deemed universally effective. The primary drawbacks of existing treatments include severe side effects, substantial toxicity, high financial costs, extended treatment regimens, and the discomfort associated with injectable forms of administration. Additionally, the growing issue of drug resistance presents a formidable challenge, further complicating disease management and control efforts. In light of these limitations, developing new therapeutic agents that can effectively disrupt the parasite’s life cycle at multiple stages is of paramount importance. This study endeavors to address this critical need by focusing on the design and synthesis of a series of novel compounds. Fifteen derivatives incorporating the nitrochromene pharmacophore were meticulously synthesized using the Henry reaction. After synthesizing these derivatives, a comprehensive evaluation of their biological activity against L. tropica was undertaken. This assessment employed both in vitro techniques to directly observe the compounds’ effects on the parasite and in silico methods, specifically molecular docking studies, to predict and analyze the interaction between the synthesized compounds and various target proteins of the parasite. The dual approach of combining experimental and computational methods aims to provide a robust understanding of the compounds’ mechanisms of action and their potential as effective anti-leishmanial agents. This integrative strategy not only enhances the reliability of the findings but also offers valuable insights that could guide future drug development efforts in combating leishmaniasis.https://doi.org/10.1038/s41598-025-86035-6NitrochromeneAnti-leishmaniaAmastigotePromastigoteMolecular docking |
spellingShingle | Niloofar Javid Ali Asadipour Ehsan Salarkia Mohammad Amin Langarizadeh Fatemeh Sharifi Mohammad Mahdavi Bagher Amirheidari Aida Iraji Hojjat Rezaiezadeh Gholamreza Hassanpour Yaghoub Pourshojaei Synthesis and evaluation of nitrochromene derivatives as potential antileishmanial therapeutics through biological and computational studies Scientific Reports Nitrochromene Anti-leishmania Amastigote Promastigote Molecular docking |
title | Synthesis and evaluation of nitrochromene derivatives as potential antileishmanial therapeutics through biological and computational studies |
title_full | Synthesis and evaluation of nitrochromene derivatives as potential antileishmanial therapeutics through biological and computational studies |
title_fullStr | Synthesis and evaluation of nitrochromene derivatives as potential antileishmanial therapeutics through biological and computational studies |
title_full_unstemmed | Synthesis and evaluation of nitrochromene derivatives as potential antileishmanial therapeutics through biological and computational studies |
title_short | Synthesis and evaluation of nitrochromene derivatives as potential antileishmanial therapeutics through biological and computational studies |
title_sort | synthesis and evaluation of nitrochromene derivatives as potential antileishmanial therapeutics through biological and computational studies |
topic | Nitrochromene Anti-leishmania Amastigote Promastigote Molecular docking |
url | https://doi.org/10.1038/s41598-025-86035-6 |
work_keys_str_mv | AT niloofarjavid synthesisandevaluationofnitrochromenederivativesaspotentialantileishmanialtherapeuticsthroughbiologicalandcomputationalstudies AT aliasadipour synthesisandevaluationofnitrochromenederivativesaspotentialantileishmanialtherapeuticsthroughbiologicalandcomputationalstudies AT ehsansalarkia synthesisandevaluationofnitrochromenederivativesaspotentialantileishmanialtherapeuticsthroughbiologicalandcomputationalstudies AT mohammadaminlangarizadeh synthesisandevaluationofnitrochromenederivativesaspotentialantileishmanialtherapeuticsthroughbiologicalandcomputationalstudies AT fatemehsharifi synthesisandevaluationofnitrochromenederivativesaspotentialantileishmanialtherapeuticsthroughbiologicalandcomputationalstudies AT mohammadmahdavi synthesisandevaluationofnitrochromenederivativesaspotentialantileishmanialtherapeuticsthroughbiologicalandcomputationalstudies AT bagheramirheidari synthesisandevaluationofnitrochromenederivativesaspotentialantileishmanialtherapeuticsthroughbiologicalandcomputationalstudies AT aidairaji synthesisandevaluationofnitrochromenederivativesaspotentialantileishmanialtherapeuticsthroughbiologicalandcomputationalstudies AT hojjatrezaiezadeh synthesisandevaluationofnitrochromenederivativesaspotentialantileishmanialtherapeuticsthroughbiologicalandcomputationalstudies AT gholamrezahassanpour synthesisandevaluationofnitrochromenederivativesaspotentialantileishmanialtherapeuticsthroughbiologicalandcomputationalstudies AT yaghoubpourshojaei synthesisandevaluationofnitrochromenederivativesaspotentialantileishmanialtherapeuticsthroughbiologicalandcomputationalstudies |