Integral representation of vertical operators on the Bergman space over the upper half-plane
Let $\Pi $ denote the upper half-plane. In this article, we prove that every vertical operator on the Bergman space $\mathcal{A}^2(\Pi )$ over the upper half-plane can be uniquely represented as an integral operator of the form \begin{equation*} \left(S_\varphi f\right)(z) = \int _{\Pi } f(w) \varp...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Académie des sciences
2023-11-01
|
| Series: | Comptes Rendus. Mathématique |
| Subjects: | |
| Online Access: | https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.477/ |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|