Multistep High-Order Methods for Nonlinear Equations Using Padé-Like Approximants

We present new high-order optimal iterative methods for solving a nonlinear equation, f(x)=0, by using Padé-like approximants. We compose optimal methods of order 4 with Newton’s step and substitute the derivative by using an appropriate rational approximant, getting optimal methods of order 8. In t...

Full description

Saved in:
Bibliographic Details
Main Authors: Alicia Cordero, José L. Hueso, Eulalia Martínez, Juan R. Torregrosa
Format: Article
Language:English
Published: Wiley 2017-01-01
Series:Discrete Dynamics in Nature and Society
Online Access:http://dx.doi.org/10.1155/2017/3204652
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832565754996719616
author Alicia Cordero
José L. Hueso
Eulalia Martínez
Juan R. Torregrosa
author_facet Alicia Cordero
José L. Hueso
Eulalia Martínez
Juan R. Torregrosa
author_sort Alicia Cordero
collection DOAJ
description We present new high-order optimal iterative methods for solving a nonlinear equation, f(x)=0, by using Padé-like approximants. We compose optimal methods of order 4 with Newton’s step and substitute the derivative by using an appropriate rational approximant, getting optimal methods of order 8. In the same way, increasing the degree of the approximant, we obtain optimal methods of order 16. We also perform different numerical tests that confirm the theoretical results.
format Article
id doaj-art-ec9efdb0771649ba9bae2969524df6f0
institution Kabale University
issn 1026-0226
1607-887X
language English
publishDate 2017-01-01
publisher Wiley
record_format Article
series Discrete Dynamics in Nature and Society
spelling doaj-art-ec9efdb0771649ba9bae2969524df6f02025-02-03T01:06:54ZengWileyDiscrete Dynamics in Nature and Society1026-02261607-887X2017-01-01201710.1155/2017/32046523204652Multistep High-Order Methods for Nonlinear Equations Using Padé-Like ApproximantsAlicia Cordero0José L. Hueso1Eulalia Martínez2Juan R. Torregrosa3Instituto de Matemática Multidisciplinar, Universitat Politècnica de València, Camino de Vera, s/n, 46022 Valencia, SpainInstituto de Matemática Multidisciplinar, Universitat Politècnica de València, Camino de Vera, s/n, 46022 Valencia, SpainInstituto de Matemática Multidisciplinar, Universitat Politècnica de València, Camino de Vera, s/n, 46022 Valencia, SpainInstituto de Matemática Multidisciplinar, Universitat Politècnica de València, Camino de Vera, s/n, 46022 Valencia, SpainWe present new high-order optimal iterative methods for solving a nonlinear equation, f(x)=0, by using Padé-like approximants. We compose optimal methods of order 4 with Newton’s step and substitute the derivative by using an appropriate rational approximant, getting optimal methods of order 8. In the same way, increasing the degree of the approximant, we obtain optimal methods of order 16. We also perform different numerical tests that confirm the theoretical results.http://dx.doi.org/10.1155/2017/3204652
spellingShingle Alicia Cordero
José L. Hueso
Eulalia Martínez
Juan R. Torregrosa
Multistep High-Order Methods for Nonlinear Equations Using Padé-Like Approximants
Discrete Dynamics in Nature and Society
title Multistep High-Order Methods for Nonlinear Equations Using Padé-Like Approximants
title_full Multistep High-Order Methods for Nonlinear Equations Using Padé-Like Approximants
title_fullStr Multistep High-Order Methods for Nonlinear Equations Using Padé-Like Approximants
title_full_unstemmed Multistep High-Order Methods for Nonlinear Equations Using Padé-Like Approximants
title_short Multistep High-Order Methods for Nonlinear Equations Using Padé-Like Approximants
title_sort multistep high order methods for nonlinear equations using pade like approximants
url http://dx.doi.org/10.1155/2017/3204652
work_keys_str_mv AT aliciacordero multistephighordermethodsfornonlinearequationsusingpadelikeapproximants
AT joselhueso multistephighordermethodsfornonlinearequationsusingpadelikeapproximants
AT eulaliamartinez multistephighordermethodsfornonlinearequationsusingpadelikeapproximants
AT juanrtorregrosa multistephighordermethodsfornonlinearequationsusingpadelikeapproximants