Modal Characteristics of Two Operating Power Transmission Poles
Unique conductor-pole couplings complicate the dynamic behaviors of electric transmission pole line systems. Finite element modeling is performed on two typical transmission poles used in southeastern USA – a steel pole and a prestressed concrete pole. The two poles are representative of unique stru...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2010-01-01
|
Series: | Shock and Vibration |
Online Access: | http://dx.doi.org/10.3233/SAV-2010-0547 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Unique conductor-pole couplings complicate the dynamic behaviors of electric transmission pole line systems. Finite element modeling is performed on two typical transmission poles used in southeastern USA – a steel pole and a prestressed concrete pole. The two poles are representative of unique structure types: a heavy rod-like structure and a lightweight, shell-type structure. Since coupling issues between the pole and the cable introduce great complexities for modeling the pole line system, simplified numerical models are used. Limited full-scale modal test results are presented to verify the numerical models. The prestressed concrete pole is shown to be easier for mode identification than the steel pole – but both numerical models show complicated coupled vibration modes. This study is part of a larger study to establish an understanding of the dynamic response analyses of power grid under ground vibrations. |
---|---|
ISSN: | 1070-9622 1875-9203 |