Mean number of real zeros of a random hyperbolic polynomial

Consider the random hyperbolic polynomial, f(x)=1pa1coshx+⋯+np×ancoshnx, in which n and p are integers such that n≥2,   p≥0, and the coefficients ak(k=1,2,…,n) are independent, standard normally distributed random variables. If νnp is the mean number of real zeros of f(x), then we prove that νnp=π−1...

Full description

Saved in:
Bibliographic Details
Main Author: J. Ernest Wilkins
Format: Article
Language:English
Published: Wiley 2000-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Subjects:
Online Access:http://dx.doi.org/10.1155/S0161171200001848
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832559040103710720
author J. Ernest Wilkins
author_facet J. Ernest Wilkins
author_sort J. Ernest Wilkins
collection DOAJ
description Consider the random hyperbolic polynomial, f(x)=1pa1coshx+⋯+np×ancoshnx, in which n and p are integers such that n≥2,   p≥0, and the coefficients ak(k=1,2,…,n) are independent, standard normally distributed random variables. If νnp is the mean number of real zeros of f(x), then we prove that νnp=π−1 logn+O{(logn)1/2}.
format Article
id doaj-art-ebcd45f50c024e2cafb7fcee92f32a42
institution Kabale University
issn 0161-1712
1687-0425
language English
publishDate 2000-01-01
publisher Wiley
record_format Article
series International Journal of Mathematics and Mathematical Sciences
spelling doaj-art-ebcd45f50c024e2cafb7fcee92f32a422025-02-03T01:30:59ZengWileyInternational Journal of Mathematics and Mathematical Sciences0161-17121687-04252000-01-0123533534210.1155/S0161171200001848Mean number of real zeros of a random hyperbolic polynomialJ. Ernest Wilkins0Department of Mathematics, Clark Atlanta University, Atlanta 30314, GA, USAConsider the random hyperbolic polynomial, f(x)=1pa1coshx+⋯+np×ancoshnx, in which n and p are integers such that n≥2,   p≥0, and the coefficients ak(k=1,2,…,n) are independent, standard normally distributed random variables. If νnp is the mean number of real zeros of f(x), then we prove that νnp=π−1 logn+O{(logn)1/2}.http://dx.doi.org/10.1155/S0161171200001848Random polynomialsreal zeroshyperbolic polynomials Kac-Rice formula.
spellingShingle J. Ernest Wilkins
Mean number of real zeros of a random hyperbolic polynomial
International Journal of Mathematics and Mathematical Sciences
Random polynomials
real zeros
hyperbolic polynomials
Kac-Rice formula.
title Mean number of real zeros of a random hyperbolic polynomial
title_full Mean number of real zeros of a random hyperbolic polynomial
title_fullStr Mean number of real zeros of a random hyperbolic polynomial
title_full_unstemmed Mean number of real zeros of a random hyperbolic polynomial
title_short Mean number of real zeros of a random hyperbolic polynomial
title_sort mean number of real zeros of a random hyperbolic polynomial
topic Random polynomials
real zeros
hyperbolic polynomials
Kac-Rice formula.
url http://dx.doi.org/10.1155/S0161171200001848
work_keys_str_mv AT jernestwilkins meannumberofrealzerosofarandomhyperbolicpolynomial