Stability, delay, and chaotic behavior in a Lotka-Volterra predator-prey system
We consider the following Lotka-Volterra predator-prey system with two delays:$x'(t) = x(t) [r_1 - ax(t- \tau_1) - by(t)]$$y'(t) = y(t) [-r_2 + cx(t) - dy(t- \tau_2)]$ (E)We show that a positive equilibrium of system (E) is globally asymptotically stable for small delays. Critical values...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
AIMS Press
2005-10-01
|
Series: | Mathematical Biosciences and Engineering |
Subjects: | |
Online Access: | https://www.aimspress.com/article/doi/10.3934/mbe.2006.3.173 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|