Spatial and Temporal Dynamics of a Viral Infection Model with Two Nonlocal Effects
We propose and study a viral infection model with two nonlocal effects and a general incidence rate. First, the semigroup theory and the classical renewal process are adopted to compute the basic reproduction number R0 as the spectral radius of the next-generation operator. It is shown that R0 equal...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2019-01-01
|
Series: | Complexity |
Online Access: | http://dx.doi.org/10.1155/2019/5842942 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We propose and study a viral infection model with two nonlocal effects and a general incidence rate. First, the semigroup theory and the classical renewal process are adopted to compute the basic reproduction number R0 as the spectral radius of the next-generation operator. It is shown that R0 equals the principal eigenvalue of a linear operator associated with a positive eigenfunction. Then we obtain the existence of endemic steady states by Shauder fixed point theorem. A threshold dynamics is established by the approach of Lyapunov functionals. Roughly speaking, if R0<1, then the virus-free steady state is globally asymptotically stable; if R0>1, then the endemic steady state is globally attractive under some additional conditions on the incidence rate. Finally, the theoretical results are illustrated by numerical simulations based on a backward Euler method. |
---|---|
ISSN: | 1076-2787 1099-0526 |