Consistent Estimators of the Population Covariance Matrix and Its Reparameterizations

For the high-dimensional covariance estimation problem, when <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mo movablelimits="true" form="prefix">lim</mo><m...

Full description

Saved in:
Bibliographic Details
Main Authors: Chia-Hsuan Tsai, Ming-Tien Tsai
Format: Article
Language:English
Published: MDPI AG 2025-01-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/13/2/191
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832588098657058816
author Chia-Hsuan Tsai
Ming-Tien Tsai
author_facet Chia-Hsuan Tsai
Ming-Tien Tsai
author_sort Chia-Hsuan Tsai
collection DOAJ
description For the high-dimensional covariance estimation problem, when <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mo movablelimits="true" form="prefix">lim</mo><mrow><mi>n</mi><mo>→</mo><mo>∞</mo></mrow></msub><mi>p</mi><mo>/</mo><mi>n</mi><mo>=</mo><mi>c</mi><mo>∈</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></mrow></semantics></math></inline-formula>, the orthogonally equivariant estimator of the population covariance matrix proposed by Tsai and Tsai exhibits certain optimal properties. Under some regularity conditions, the authors showed that their novel estimators of eigenvalues are consistent with the eigenvalues of the population covariance matrix. In this paper, under the multinormal setup, we show that they are consistent estimators of the population covariance matrix under a high-dimensional asymptotic setup. We also show that the novel estimator is the MLE of the population covariance matrix when <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>c</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></semantics></math></inline-formula>. The novel estimator is used to establish that the optimal decomposite <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msubsup><mi>T</mi><mrow><mi>T</mi></mrow><mn>2</mn></msubsup></semantics></math></inline-formula>-test has been retained. A high-dimensional statistical hypothesis testing problem is used to carry out statistical inference for high-dimensional principal component analysis-related problems without the sparsity assumption. In the final section, we discuss the situation in which <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>p</mi><mo>></mo><mi>n</mi></mrow></semantics></math></inline-formula>, especially for high-dimensional low-sample size categorical data models in which <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>p</mi><mo>></mo><mo>></mo><mi>n</mi></mrow></semantics></math></inline-formula>.
format Article
id doaj-art-ea8af4d7ab5e4c37983e277734b6014f
institution Kabale University
issn 2227-7390
language English
publishDate 2025-01-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj-art-ea8af4d7ab5e4c37983e277734b6014f2025-01-24T13:39:41ZengMDPI AGMathematics2227-73902025-01-0113219110.3390/math13020191Consistent Estimators of the Population Covariance Matrix and Its ReparameterizationsChia-Hsuan Tsai0Ming-Tien Tsai1Institute of Statistical Science, Academia Sinica, Taipei, TaiwanInstitute of Statistical Science, Academia Sinica, Taipei, TaiwanFor the high-dimensional covariance estimation problem, when <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mo movablelimits="true" form="prefix">lim</mo><mrow><mi>n</mi><mo>→</mo><mo>∞</mo></mrow></msub><mi>p</mi><mo>/</mo><mi>n</mi><mo>=</mo><mi>c</mi><mo>∈</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></mrow></semantics></math></inline-formula>, the orthogonally equivariant estimator of the population covariance matrix proposed by Tsai and Tsai exhibits certain optimal properties. Under some regularity conditions, the authors showed that their novel estimators of eigenvalues are consistent with the eigenvalues of the population covariance matrix. In this paper, under the multinormal setup, we show that they are consistent estimators of the population covariance matrix under a high-dimensional asymptotic setup. We also show that the novel estimator is the MLE of the population covariance matrix when <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>c</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></semantics></math></inline-formula>. The novel estimator is used to establish that the optimal decomposite <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msubsup><mi>T</mi><mrow><mi>T</mi></mrow><mn>2</mn></msubsup></semantics></math></inline-formula>-test has been retained. A high-dimensional statistical hypothesis testing problem is used to carry out statistical inference for high-dimensional principal component analysis-related problems without the sparsity assumption. In the final section, we discuss the situation in which <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>p</mi><mo>></mo><mi>n</mi></mrow></semantics></math></inline-formula>, especially for high-dimensional low-sample size categorical data models in which <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>p</mi><mo>></mo><mo>></mo><mi>n</mi></mrow></semantics></math></inline-formula>.https://www.mdpi.com/2227-7390/13/2/191high-dimensional covariance matrixMLEsthe consistent estimatorthe decomposite <named-content content-type="inline-formula"><inline-formula> <mml:math id="mm3222"> <mml:semantics> <mml:msubsup> <mml:mi>T</mml:mi> <mml:mrow> <mml:mi>T</mml:mi> </mml:mrow> <mml:mn>2</mml:mn> </mml:msubsup> </mml:semantics> </mml:math> </inline-formula></named-content>-test
spellingShingle Chia-Hsuan Tsai
Ming-Tien Tsai
Consistent Estimators of the Population Covariance Matrix and Its Reparameterizations
Mathematics
high-dimensional covariance matrix
MLEs
the consistent estimator
the decomposite <named-content content-type="inline-formula"><inline-formula> <mml:math id="mm3222"> <mml:semantics> <mml:msubsup> <mml:mi>T</mml:mi> <mml:mrow> <mml:mi>T</mml:mi> </mml:mrow> <mml:mn>2</mml:mn> </mml:msubsup> </mml:semantics> </mml:math> </inline-formula></named-content>-test
title Consistent Estimators of the Population Covariance Matrix and Its Reparameterizations
title_full Consistent Estimators of the Population Covariance Matrix and Its Reparameterizations
title_fullStr Consistent Estimators of the Population Covariance Matrix and Its Reparameterizations
title_full_unstemmed Consistent Estimators of the Population Covariance Matrix and Its Reparameterizations
title_short Consistent Estimators of the Population Covariance Matrix and Its Reparameterizations
title_sort consistent estimators of the population covariance matrix and its reparameterizations
topic high-dimensional covariance matrix
MLEs
the consistent estimator
the decomposite <named-content content-type="inline-formula"><inline-formula> <mml:math id="mm3222"> <mml:semantics> <mml:msubsup> <mml:mi>T</mml:mi> <mml:mrow> <mml:mi>T</mml:mi> </mml:mrow> <mml:mn>2</mml:mn> </mml:msubsup> </mml:semantics> </mml:math> </inline-formula></named-content>-test
url https://www.mdpi.com/2227-7390/13/2/191
work_keys_str_mv AT chiahsuantsai consistentestimatorsofthepopulationcovariancematrixanditsreparameterizations
AT mingtientsai consistentestimatorsofthepopulationcovariancematrixanditsreparameterizations