Bacteriophage and Phage-Encoded Depolymerase Exhibit Antibacterial Activity Against K9-Type <i>Acinetobacter baumannii</i> in Mouse Sepsis and Burn Skin Infection Models
<i>Acinetobacter baumannii</i> is a widely distributed nosocomial pathogen that causes various acute and chronic infections, particularly in immunocompromised patients. In this study, the activities of the K9-specific virulent phage AM24 and phage-encoded depolymerase DepAPK09 were asses...
Saved in:
Main Authors: | , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2025-01-01
|
Series: | Viruses |
Subjects: | |
Online Access: | https://www.mdpi.com/1999-4915/17/1/70 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | <i>Acinetobacter baumannii</i> is a widely distributed nosocomial pathogen that causes various acute and chronic infections, particularly in immunocompromised patients. In this study, the activities of the K9-specific virulent phage AM24 and phage-encoded depolymerase DepAPK09 were assessed using in vivo mouse sepsis and burn skin infection models. In the mouse sepsis model, in the case of prevention or early treatment, a single K9-specific phage or recombinant depolymerase injection was able to protect 100% of the mice after parenteral infection with a lethal dose of <i>A. baumannii</i> of the K9-type, with complete eradication of the pathogen. In the case of delayed treatment, mouse survival decreased to 70% when injected with the phage and to 40% when treated with the recombinant enzyme. In the mouse burn skin infection model, the number of <i>A. baumannii</i> cells on the surface of the wound and in the deep layers of the skin decreased by several-fold after treatment with both the K9-specific phage and the recombinant depolymerase. The phage and recombinant depolymerase were highly stable and retained activity under a wide range of temperatures and pH values. The results obtained contribute to expanding our understanding of the in vivo therapeutic potential of specific phages and phage-derived depolymerases interacting with <i>A. baumannii</i> of different capsular types. |
---|---|
ISSN: | 1999-4915 |