Self-Interference Cancellation-Based Mutual-Coupling Model for Full-Duplex Single-Channel MIMO Systems

The challenge of a full-duplex single-channel system is the method to transmit and receive signals simultaneously at the same time and on the same frequency. Consequently, a critical issue involved in such an operation is the resulting self-interference. Moreover, for MIMO system, the full-duplex si...

Full description

Saved in:
Bibliographic Details
Main Authors: Pawinee Meerasri, Peerapong Uthansakul, Monthippa Uthansakul
Format: Article
Language:English
Published: Wiley 2014-01-01
Series:International Journal of Antennas and Propagation
Online Access:http://dx.doi.org/10.1155/2014/405487
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The challenge of a full-duplex single-channel system is the method to transmit and receive signals simultaneously at the same time and on the same frequency. Consequently, a critical issue involved in such an operation is the resulting self-interference. Moreover, for MIMO system, the full-duplex single-channel system is subjected to the very strong self-interference signals due to multiple transmitting and receiving antennas. So far in the pieces of literature, there have not been any suitable techniques presented to reduce the self-interference for full-duplex single-channel MIMO systems. This paper initially proposes the method to cancel the self-interference by utilizing the mutual-coupling model for self-interference cancellation. The interference can be eliminated by using a preknown interference, that is, the mutual-coupling signals. The results indicate that the channel capacity performance of the proposed technique can significantly be improved due to the reduction of the self-interference power. The measurement results indicate that the proposed MIMO system can suppress the self-interference and mutual-interference signals with the reduction of 31 dB received power.
ISSN:1687-5869
1687-5877