Enhanced laser-induced single-cycle terahertz generation in a spintronic emitter with a gradient interface

The development of spintronic emitters of broadband terahertz (THz) pulses relies on designing heterostructures in which the processes of laser-driven spin current generation and subsequent spin-to-charge current conversion are the most efficient. The interface between the ferromagnetic and nonmagne...

Full description

Saved in:
Bibliographic Details
Main Authors: Leonid A. Shelukhin, Anna V. Kuzikova, Andrey V. Telegin, Vladimir D. Bessonov, Alexey V. Ognev, Alexander S. Samardak, Junho Park, Young Keun Kim, Alexandra M. Kalashnikova
Format: Article
Language:English
Published: Taylor & Francis Group 2025-12-01
Series:Science and Technology of Advanced Materials
Subjects:
Online Access:https://www.tandfonline.com/doi/10.1080/14686996.2024.2448417
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The development of spintronic emitters of broadband terahertz (THz) pulses relies on designing heterostructures in which the processes of laser-driven spin current generation and subsequent spin-to-charge current conversion are the most efficient. The interface between the ferromagnetic and nonmagnetic layers in an emitter is a critical element. In this study, we experimentally examined single-cycle THz pulse generation from a laser-pulse-excited Pt/Co emitter with a 1.2-nm-thick composition-gradient interface between the Pt and Co and compared it with the emission from a conventional Pt/Co structure with an abrupt interface. We found that the gradient interface improved the efficiency of the optics-to-THz conversion by a factor of two in a wide range of optical fluences up to 3 mJ⋅cm−2. This enhancement was caused by a pronounced increase in the transmittance of the laser-driven spin-polarized current through the gradient interface compared with the abrupt interface. Moreover, it was evident that such transmission deteriorated with the laser fluence owing to the spin accumulation effect.
ISSN:1468-6996
1878-5514