On the sumsets of units in a ring of matrices over $ \mathbb{Z}/m\mathbb{Z} $
Let $ M_{n, m}: = Mat_n(\mathbb{Z}/m\mathbb{Z}) $ be the ring of matrices of $ n\times n $ over $ \mathbb{Z}/m\mathbb{Z} $ and $ G_{n, m}: = Gl_n(\mathbb{Z}/m\mathbb{Z}) $ be the multiplicative group of units of $ M_{n, m} $ with $ n\geqslant 2, m\geqslant 2. $ In this paper, we obtain an exact form...
Saved in:
| Main Authors: | Yifan Luo, Kaisheng Lei, Qingzhong Ji |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
AIMS Press
2025-03-01
|
| Series: | Electronic Research Archive |
| Subjects: | |
| Online Access: | https://www.aimspress.com/article/doi/10.3934/era.2025059 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Similar Items
-
On the sum of matrices of special linear group over finite field
by: Yifan Luo, et al.
Published: (2025-02-01) -
Distribution of matrices over $\mathbb{F}_q[x]$
by: Ji, Yibo
Published: (2024-10-01) -
Riemann–Roch for the ring $\mathbb{Z}$
by: Connes, Alain, et al.
Published: (2024-05-01) -
Unit group of the ring of negacirculant matrices over finite commutative chain rings
by: Naksing Prarinya, et al.
Published: (2025-04-01) -
Elementary reduction of matrices over Bezout ring with stable range 1 (in Ukrainian)
by: O. M. Romaniv
Published: (2012-05-01)