Seismic Resistance and Displacement Mechanism of the Concrete Footing

A realistic seismic simulation of the concrete footing has been made by using finite element method (FEM) software called ABAQUS. The effect of concrete footing embedment in soil on concrete footing-soil foundation interaction has numerically been simulated for considering displacement, stress, stra...

Full description

Saved in:
Bibliographic Details
Main Authors: Abdoullah Namdar, Yun Dong
Format: Article
Language:English
Published: Wiley 2019-01-01
Series:Shock and Vibration
Online Access:http://dx.doi.org/10.1155/2019/5498505
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A realistic seismic simulation of the concrete footing has been made by using finite element method (FEM) software called ABAQUS. The effect of concrete footing embedment in soil on concrete footing-soil foundation interaction has numerically been simulated for considering displacement, stress, strain, and seismic acceleration load response at the base of a concrete footing. The results showed that the height of embedded concrete footing in soil foundation controls (i) mechanism and magnitude of lateral, vertical, and differential displacements of the concrete footing, (ii) strain energy, the acceleration load response, and stress paths, and (iii) concrete footing-soil foundation interaction. Compared with various theoretical and experimental results reported in the literature, the present study provides realistic seismic behavior of concrete footing-soil foundation interaction.
ISSN:1070-9622
1875-9203