On the Fractional Dynamics of Kinks in Sine-Gordon Models

In the present work, we explored the dynamics of single kinks, kink–anti-kink pairs and bound states in the prototypical fractional Klein–Gordon example of the sine-Gordon equation. In particular, we modified the order <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML&quo...

Full description

Saved in:
Bibliographic Details
Main Authors: Tassos Bountis, Julia Cantisán, Jesús Cuevas-Maraver, Jorge Eduardo Macías-Díaz, Panayotis G. Kevrekidis
Format: Article
Language:English
Published: MDPI AG 2025-01-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/13/2/220
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832588097286569984
author Tassos Bountis
Julia Cantisán
Jesús Cuevas-Maraver
Jorge Eduardo Macías-Díaz
Panayotis G. Kevrekidis
author_facet Tassos Bountis
Julia Cantisán
Jesús Cuevas-Maraver
Jorge Eduardo Macías-Díaz
Panayotis G. Kevrekidis
author_sort Tassos Bountis
collection DOAJ
description In the present work, we explored the dynamics of single kinks, kink–anti-kink pairs and bound states in the prototypical fractional Klein–Gordon example of the sine-Gordon equation. In particular, we modified the order <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>β</mi></semantics></math></inline-formula> of the temporal derivative to that of a Caputo fractional type and found that, for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1</mn><mo><</mo><mi>β</mi><mo><</mo><mn>2</mn></mrow></semantics></math></inline-formula>, this imposes a dissipative dynamical behavior on the coherent structures. We also examined the variation of a fractional Riesz order <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula> on the spatial derivative. Here, depending on whether this order was below or above the harmonic value <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>α</mi><mo>=</mo><mn>2</mn></mrow></semantics></math></inline-formula>, we found, respectively, monotonically attracting kinks, or non-monotonic and potentially attracting or repelling kinks, with a saddle equilibrium separating the two. Finally, we also explored the interplay of the two derivatives, when both Caputo temporal and Riesz spatial derivatives are involved.
format Article
id doaj-art-e7eeb98efbe144c5a6a328d0a40fc426
institution Kabale University
issn 2227-7390
language English
publishDate 2025-01-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj-art-e7eeb98efbe144c5a6a328d0a40fc4262025-01-24T13:39:47ZengMDPI AGMathematics2227-73902025-01-0113222010.3390/math13020220On the Fractional Dynamics of Kinks in Sine-Gordon ModelsTassos Bountis0Julia Cantisán1Jesús Cuevas-Maraver2Jorge Eduardo Macías-Díaz3Panayotis G. Kevrekidis4Department of Mathematics, University of Patras, 26500 Patras, GreeceGrupo de Física No Lineal (FQM-280), Departamento de Ciencias Integradas y Centro de Estudios Avanzados en Física, Matemáticas y Computación, Universidad de Huelva, 21071 Huelva, SpainGrupo de Física No Lineal (FQM-280), Departamento de Física Aplicada I, Escuela Politécnica Superior, Universidad de Sevilla, C/ Virgen de África, 7, 41011 Sevilla, SpainDepartment of Mathematics and Didactics of Mathematics, School of Digital Technologies, Tallinn University, Narva Rd. 25, 10120 Tallinn, EstoniaDepartment of Mathematics and Statistics, University of Massachusetts Amherst, Amherst, MA 01003-4515, USAIn the present work, we explored the dynamics of single kinks, kink–anti-kink pairs and bound states in the prototypical fractional Klein–Gordon example of the sine-Gordon equation. In particular, we modified the order <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>β</mi></semantics></math></inline-formula> of the temporal derivative to that of a Caputo fractional type and found that, for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1</mn><mo><</mo><mi>β</mi><mo><</mo><mn>2</mn></mrow></semantics></math></inline-formula>, this imposes a dissipative dynamical behavior on the coherent structures. We also examined the variation of a fractional Riesz order <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula> on the spatial derivative. Here, depending on whether this order was below or above the harmonic value <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>α</mi><mo>=</mo><mn>2</mn></mrow></semantics></math></inline-formula>, we found, respectively, monotonically attracting kinks, or non-monotonic and potentially attracting or repelling kinks, with a saddle equilibrium separating the two. Finally, we also explored the interplay of the two derivatives, when both Caputo temporal and Riesz spatial derivatives are involved.https://www.mdpi.com/2227-7390/13/2/220sine-Gordon equationkinksbreathersfractional derivativesCaputo derivativeRiesz derivative
spellingShingle Tassos Bountis
Julia Cantisán
Jesús Cuevas-Maraver
Jorge Eduardo Macías-Díaz
Panayotis G. Kevrekidis
On the Fractional Dynamics of Kinks in Sine-Gordon Models
Mathematics
sine-Gordon equation
kinks
breathers
fractional derivatives
Caputo derivative
Riesz derivative
title On the Fractional Dynamics of Kinks in Sine-Gordon Models
title_full On the Fractional Dynamics of Kinks in Sine-Gordon Models
title_fullStr On the Fractional Dynamics of Kinks in Sine-Gordon Models
title_full_unstemmed On the Fractional Dynamics of Kinks in Sine-Gordon Models
title_short On the Fractional Dynamics of Kinks in Sine-Gordon Models
title_sort on the fractional dynamics of kinks in sine gordon models
topic sine-Gordon equation
kinks
breathers
fractional derivatives
Caputo derivative
Riesz derivative
url https://www.mdpi.com/2227-7390/13/2/220
work_keys_str_mv AT tassosbountis onthefractionaldynamicsofkinksinsinegordonmodels
AT juliacantisan onthefractionaldynamicsofkinksinsinegordonmodels
AT jesuscuevasmaraver onthefractionaldynamicsofkinksinsinegordonmodels
AT jorgeeduardomaciasdiaz onthefractionaldynamicsofkinksinsinegordonmodels
AT panayotisgkevrekidis onthefractionaldynamicsofkinksinsinegordonmodels