Numerical Simulations of Single-Step Holographic Interferometry for Split-Ring Metamaterial Fabrication

Artificial microstructures, especially metamaterials, have garnered increasing attention in numerous applications due to their rich and distinctive properties. Starting from the principle of multi-beam interference, we have theoretically devised a beam configuration consisting of six symmetrically d...

Full description

Saved in:
Bibliographic Details
Main Authors: Zhiming Qi, Wenyao Liang
Format: Article
Language:English
Published: MDPI AG 2025-01-01
Series:Nanomaterials
Subjects:
Online Access:https://www.mdpi.com/2079-4991/15/2/86
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Artificial microstructures, especially metamaterials, have garnered increasing attention in numerous applications due to their rich and distinctive properties. Starting from the principle of multi-beam interference, we have theoretically devised a beam configuration consisting of six symmetrically distributed coherent beams to generate two-dimensional microstructures with diverse shapes of unitcells under different polarization combinations. In particular, a split-ring metamaterial template is achieved with two adjacent circularly and four linearly polarized beams with such single-step holographic interferometry. Furthermore, simulation results show that the orientation and shape of the split-ring unitcell can be accurately adjusted by controlling the polarization position, polarization degree, or power ratio of the coherent beams. The optimal parameters to produce a high-quality split-ring metamaterial with a contrast higher than 0.97 are obtained. These results provide useful guidance for the effective and low-cost fabrication of metamaterials with diverse unitcells.
ISSN:2079-4991