Sub-cellular population imaging tools reveal stable apical dendrites in hippocampal area CA3

Abstract Apical and basal dendrites of pyramidal neurons receive anatomically and functionally distinct inputs, implying compartment-level functional diversity during behavior. To test this, we imaged in vivo calcium signals from soma, apical dendrites, and basal dendrites in mouse hippocampal CA3 p...

Full description

Saved in:
Bibliographic Details
Main Authors: Jason J. Moore, Shannon K. Rashid, Emmett Bicker, Cara D. Johnson, Naomi Codrington, Dmitri B. Chklovskii, Jayeeta Basu
Format: Article
Language:English
Published: Nature Portfolio 2025-01-01
Series:Nature Communications
Online Access:https://doi.org/10.1038/s41467-025-56289-9
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832571551653822464
author Jason J. Moore
Shannon K. Rashid
Emmett Bicker
Cara D. Johnson
Naomi Codrington
Dmitri B. Chklovskii
Jayeeta Basu
author_facet Jason J. Moore
Shannon K. Rashid
Emmett Bicker
Cara D. Johnson
Naomi Codrington
Dmitri B. Chklovskii
Jayeeta Basu
author_sort Jason J. Moore
collection DOAJ
description Abstract Apical and basal dendrites of pyramidal neurons receive anatomically and functionally distinct inputs, implying compartment-level functional diversity during behavior. To test this, we imaged in vivo calcium signals from soma, apical dendrites, and basal dendrites in mouse hippocampal CA3 pyramidal neurons during head-fixed navigation. To capture compartment-specific population dynamics, we developed computational tools to automatically segment dendrites and extract accurate fluorescence traces from densely labeled neurons. We validated the method on sparsely labeled preparations and synthetic data, predicting an optimal labeling density for high experimental throughput and analytical accuracy. Our method detected rapid, local dendritic activity. Dendrites showed robust spatial tuning, similar to soma but with higher activity rates. Across days, apical dendrites remained more stable and outperformed in decoding of the animal’s position. Thus, population-level apical and basal dendritic differences may reflect distinct compartment-specific input-output functions and computations in CA3. These tools will facilitate future studies mapping sub-cellular activity and their relation to behavior.
format Article
id doaj-art-e5fa8447794e4020b4feff0caf21731f
institution Kabale University
issn 2041-1723
language English
publishDate 2025-01-01
publisher Nature Portfolio
record_format Article
series Nature Communications
spelling doaj-art-e5fa8447794e4020b4feff0caf21731f2025-02-02T12:33:32ZengNature PortfolioNature Communications2041-17232025-01-0116112110.1038/s41467-025-56289-9Sub-cellular population imaging tools reveal stable apical dendrites in hippocampal area CA3Jason J. Moore0Shannon K. Rashid1Emmett Bicker2Cara D. Johnson3Naomi Codrington4Dmitri B. Chklovskii5Jayeeta Basu6Neuroscience Institute, New York University Langone HealthNeuroscience Institute, New York University Langone HealthNeuroscience Institute, New York University Langone HealthNeuroscience Institute, New York University Langone HealthNeuroscience Institute, New York University Langone HealthNeuroscience Institute, New York University Langone HealthNeuroscience Institute, New York University Langone HealthAbstract Apical and basal dendrites of pyramidal neurons receive anatomically and functionally distinct inputs, implying compartment-level functional diversity during behavior. To test this, we imaged in vivo calcium signals from soma, apical dendrites, and basal dendrites in mouse hippocampal CA3 pyramidal neurons during head-fixed navigation. To capture compartment-specific population dynamics, we developed computational tools to automatically segment dendrites and extract accurate fluorescence traces from densely labeled neurons. We validated the method on sparsely labeled preparations and synthetic data, predicting an optimal labeling density for high experimental throughput and analytical accuracy. Our method detected rapid, local dendritic activity. Dendrites showed robust spatial tuning, similar to soma but with higher activity rates. Across days, apical dendrites remained more stable and outperformed in decoding of the animal’s position. Thus, population-level apical and basal dendritic differences may reflect distinct compartment-specific input-output functions and computations in CA3. These tools will facilitate future studies mapping sub-cellular activity and their relation to behavior.https://doi.org/10.1038/s41467-025-56289-9
spellingShingle Jason J. Moore
Shannon K. Rashid
Emmett Bicker
Cara D. Johnson
Naomi Codrington
Dmitri B. Chklovskii
Jayeeta Basu
Sub-cellular population imaging tools reveal stable apical dendrites in hippocampal area CA3
Nature Communications
title Sub-cellular population imaging tools reveal stable apical dendrites in hippocampal area CA3
title_full Sub-cellular population imaging tools reveal stable apical dendrites in hippocampal area CA3
title_fullStr Sub-cellular population imaging tools reveal stable apical dendrites in hippocampal area CA3
title_full_unstemmed Sub-cellular population imaging tools reveal stable apical dendrites in hippocampal area CA3
title_short Sub-cellular population imaging tools reveal stable apical dendrites in hippocampal area CA3
title_sort sub cellular population imaging tools reveal stable apical dendrites in hippocampal area ca3
url https://doi.org/10.1038/s41467-025-56289-9
work_keys_str_mv AT jasonjmoore subcellularpopulationimagingtoolsrevealstableapicaldendritesinhippocampalareaca3
AT shannonkrashid subcellularpopulationimagingtoolsrevealstableapicaldendritesinhippocampalareaca3
AT emmettbicker subcellularpopulationimagingtoolsrevealstableapicaldendritesinhippocampalareaca3
AT caradjohnson subcellularpopulationimagingtoolsrevealstableapicaldendritesinhippocampalareaca3
AT naomicodrington subcellularpopulationimagingtoolsrevealstableapicaldendritesinhippocampalareaca3
AT dmitribchklovskii subcellularpopulationimagingtoolsrevealstableapicaldendritesinhippocampalareaca3
AT jayeetabasu subcellularpopulationimagingtoolsrevealstableapicaldendritesinhippocampalareaca3