Experimental Investigation on the Correlation between Dynamic Ultrasonic and Mechanical Properties of Sandstone Subjected to Uniaxial Compression
Ultrasonic wave velocity is effective to evaluate anisotropy property and predict rock failure. This paper investigates the correlation between dynamic ultrasonic and mechanical properties of sandstones with different buried depths subjected to uniaxial compression tests. The circumferential anisotr...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2021-01-01
|
Series: | Geofluids |
Online Access: | http://dx.doi.org/10.1155/2021/5578591 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1832560147175571456 |
---|---|
author | Yunjiang Sun Jianping Zuo Yue Shi Zhengdai Li Changning Mi Jinhao Wen |
author_facet | Yunjiang Sun Jianping Zuo Yue Shi Zhengdai Li Changning Mi Jinhao Wen |
author_sort | Yunjiang Sun |
collection | DOAJ |
description | Ultrasonic wave velocity is effective to evaluate anisotropy property and predict rock failure. This paper investigates the correlation between dynamic ultrasonic and mechanical properties of sandstones with different buried depths subjected to uniaxial compression tests. The circumferential anisotropy and axial wave velocity of sandstone are obtained by means of ultrasonic wave velocity measurements. The mechanical properties, including Young’s modulus and uniaxial compressive strength, are positively correlated with the axial P wave velocity. The average angles between the sandstone failure plane and the minimum and maximum wave directions are 35.8° and 63.3°, respectively. The axial P wave velocity almost keeps constant, and the axial S wave velocity has a decreasing trend before the failure of rock specimen. In most rock samples under uniaxial compression, shear failure occurs in the middle and splitting appears near both sides. Additionally, the dynamic Young’s modulus and dynamic Poisson’s ratio during loading are obtained, and the negative values of the Poisson’s ratio occur at the initial compression stage. Distortion and rotation of micro/mesorock structures may be responsible for the negative Poisson’s ratio. |
format | Article |
id | doaj-art-e4293a913b4f4160aa854d0ff28d73ae |
institution | Kabale University |
issn | 1468-8115 1468-8123 |
language | English |
publishDate | 2021-01-01 |
publisher | Wiley |
record_format | Article |
series | Geofluids |
spelling | doaj-art-e4293a913b4f4160aa854d0ff28d73ae2025-02-03T01:28:18ZengWileyGeofluids1468-81151468-81232021-01-01202110.1155/2021/55785915578591Experimental Investigation on the Correlation between Dynamic Ultrasonic and Mechanical Properties of Sandstone Subjected to Uniaxial CompressionYunjiang Sun0Jianping Zuo1Yue Shi2Zhengdai Li3Changning Mi4Jinhao Wen5School of Mechanics and Civil Engineering, China University of Mining & Technology (Beijing), Beijing 100083, ChinaSchool of Mechanics and Civil Engineering, China University of Mining & Technology (Beijing), Beijing 100083, ChinaSchool of Mechanics and Civil Engineering, China University of Mining & Technology (Beijing), Beijing 100083, ChinaSchool of Mechanics and Civil Engineering, China University of Mining & Technology (Beijing), Beijing 100083, ChinaSchool of Mechanics and Civil Engineering, China University of Mining & Technology (Beijing), Beijing 100083, ChinaSchool of Mechanics and Civil Engineering, China University of Mining & Technology (Beijing), Beijing 100083, ChinaUltrasonic wave velocity is effective to evaluate anisotropy property and predict rock failure. This paper investigates the correlation between dynamic ultrasonic and mechanical properties of sandstones with different buried depths subjected to uniaxial compression tests. The circumferential anisotropy and axial wave velocity of sandstone are obtained by means of ultrasonic wave velocity measurements. The mechanical properties, including Young’s modulus and uniaxial compressive strength, are positively correlated with the axial P wave velocity. The average angles between the sandstone failure plane and the minimum and maximum wave directions are 35.8° and 63.3°, respectively. The axial P wave velocity almost keeps constant, and the axial S wave velocity has a decreasing trend before the failure of rock specimen. In most rock samples under uniaxial compression, shear failure occurs in the middle and splitting appears near both sides. Additionally, the dynamic Young’s modulus and dynamic Poisson’s ratio during loading are obtained, and the negative values of the Poisson’s ratio occur at the initial compression stage. Distortion and rotation of micro/mesorock structures may be responsible for the negative Poisson’s ratio.http://dx.doi.org/10.1155/2021/5578591 |
spellingShingle | Yunjiang Sun Jianping Zuo Yue Shi Zhengdai Li Changning Mi Jinhao Wen Experimental Investigation on the Correlation between Dynamic Ultrasonic and Mechanical Properties of Sandstone Subjected to Uniaxial Compression Geofluids |
title | Experimental Investigation on the Correlation between Dynamic Ultrasonic and Mechanical Properties of Sandstone Subjected to Uniaxial Compression |
title_full | Experimental Investigation on the Correlation between Dynamic Ultrasonic and Mechanical Properties of Sandstone Subjected to Uniaxial Compression |
title_fullStr | Experimental Investigation on the Correlation between Dynamic Ultrasonic and Mechanical Properties of Sandstone Subjected to Uniaxial Compression |
title_full_unstemmed | Experimental Investigation on the Correlation between Dynamic Ultrasonic and Mechanical Properties of Sandstone Subjected to Uniaxial Compression |
title_short | Experimental Investigation on the Correlation between Dynamic Ultrasonic and Mechanical Properties of Sandstone Subjected to Uniaxial Compression |
title_sort | experimental investigation on the correlation between dynamic ultrasonic and mechanical properties of sandstone subjected to uniaxial compression |
url | http://dx.doi.org/10.1155/2021/5578591 |
work_keys_str_mv | AT yunjiangsun experimentalinvestigationonthecorrelationbetweendynamicultrasonicandmechanicalpropertiesofsandstonesubjectedtouniaxialcompression AT jianpingzuo experimentalinvestigationonthecorrelationbetweendynamicultrasonicandmechanicalpropertiesofsandstonesubjectedtouniaxialcompression AT yueshi experimentalinvestigationonthecorrelationbetweendynamicultrasonicandmechanicalpropertiesofsandstonesubjectedtouniaxialcompression AT zhengdaili experimentalinvestigationonthecorrelationbetweendynamicultrasonicandmechanicalpropertiesofsandstonesubjectedtouniaxialcompression AT changningmi experimentalinvestigationonthecorrelationbetweendynamicultrasonicandmechanicalpropertiesofsandstonesubjectedtouniaxialcompression AT jinhaowen experimentalinvestigationonthecorrelationbetweendynamicultrasonicandmechanicalpropertiesofsandstonesubjectedtouniaxialcompression |