Finite Element Modeling of Acoustic Nonlinearity Derived from Plastic Deformation of 35CrMoA Steel

Acoustic nonlinearity derived from microstructural evolution of metallic materials during plastic deformation has been found to be a promising nondestructive technique to identify early stage plastic damage in metallic structural components. In the current investigation, the propagation of longitudi...

Full description

Saved in:
Bibliographic Details
Main Authors: Shumin Yu, Lei Hu, Xingbin Yang, Xiangyu Ji
Format: Article
Language:English
Published: MDPI AG 2025-03-01
Series:Metals
Subjects:
Online Access:https://www.mdpi.com/2075-4701/15/4/343
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Acoustic nonlinearity derived from microstructural evolution of metallic materials during plastic deformation has been found to be a promising nondestructive technique to identify early stage plastic damage in metallic structural components. In the current investigation, the propagation of longitudinal ultrasonic waves in plastically deformed 35CrMoA steel plates was simulated using finite element (FE) methods based on the theory of dislocation-induced acoustic nonlinearity to establish the relationship between acoustic nonlinearity parameters and plastic strain. Experiments were conducted to validate the numerical model. Both simulated and experimental results demonstrate a monotonic increase in the acoustic nonlinearity parameter with applied plastic strain. The simulated ultrasonic nonlinear parameters deviate from experimental measurements in a two-stage pattern. In the low-strain regime (plastic strain < 8.5%), FE predictions underestimate experimental values, possibly due to dislocation entanglement in high-density regions that restricts dislocation mobility and suppresses acoustic nonlinearity. The FE model overestimates the parameters when plastic strain exceeds about 8.5%. This reversal is related to the formation of dislocation cells and walls with enhanced acoustic nonlinearity.
ISSN:2075-4701