Dynamic Influence Prediction of Social Network Based on Partial Autoregression Single Index Model

Everything is connected in the world. From small groups to global societies, the interactions among people, technology, and policies need sophisticated techniques to be perceived and forecasted. In social network, it has been concluded that the microblog users influence and microblog grade are nonli...

Full description

Saved in:
Bibliographic Details
Main Authors: Ya-hui Jia, Taotao Song, Shun-yao Wu, Qi Zhang, Yu-xia Su
Format: Article
Language:English
Published: Wiley 2019-01-01
Series:Discrete Dynamics in Nature and Society
Online Access:http://dx.doi.org/10.1155/2019/6237406
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Everything is connected in the world. From small groups to global societies, the interactions among people, technology, and policies need sophisticated techniques to be perceived and forecasted. In social network, it has been concluded that the microblog users influence and microblog grade are nonlinearly dependent. However, to the best of our knowledge, the nonlinear influence predication of social network has not been explored in the existing literature. This article proposes a partial autoregression single index model to combine network structure (linear) and static covariates (nonparametric) flexibly. Compared with previous work, our model has fewer limits and more applications. The profile least squares estimation is employed to infer this semiparametric model, and variables selection is performed via the smoothly clipped absolute deviation penalty (SCAD). Simulations are conducted to demonstrate finite sample behaviors.
ISSN:1026-0226
1607-887X