A Novel Grouting Diffusion Monitoring System Based on ZigBee Wireless Sensor Network
Grouting technology is widely used in construction and civil engineering, where evaluating grouting effectiveness is crucial due to the uncertainty of subsurface conditions. Existing methods face drawbacks such as destructiveness, high cost, poor durability, and limited data collection. To address t...
Saved in:
| Main Authors: | , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-04-01
|
| Series: | Sensors |
| Subjects: | |
| Online Access: | https://www.mdpi.com/1424-8220/25/9/2693 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Grouting technology is widely used in construction and civil engineering, where evaluating grouting effectiveness is crucial due to the uncertainty of subsurface conditions. Existing methods face drawbacks such as destructiveness, high cost, poor durability, and limited data collection. To address these issues, this paper proposes a novel wireless real-time monitoring system based on a ZigBee sensor network framework. The sensor system integrates a direct current method in geophysics with apparent resistivity measurement to assess grouting effectiveness in real time. It consists of multichannel data acquisition units with electrodes for sensing underground currents and a user control unit for centralized management and data processing. A system acquisition performance test confirmed that the differential input channel’s equivalent input noise of the ADC was only 175 μV and 188 μV, and the average error of the captured sine wave data was 4.51 mV and 4.19 mV, ensuring the voltage measurement accuracy of the data acquisition units. Stability testing of the equipment in road and construction environments showed an average RSD of 2.86% and 2.92%, respectively, indicating good stability of the measurements. ZigBee network performance tests in three simulated environments and a field test showed that the packet loss rate (PLR) was less than 2% from 0 to 50 m, ensuring network communication in grouting project scenarios. On-site experiments demonstrate that the system can simultaneously monitor multiple profiles and perform inversions in the grouting area, which can be assembled into 3D inversion images for evaluating grout diffusion, offering valuable insights for optimizing construction operations, and enhancing grouting efficiency. |
|---|---|
| ISSN: | 1424-8220 |