Bi-Univalent Function Classes Defined by Using a Second Einstein Function
Motivated by q-calculus, subordination principle, and the second Einstein function, we define two families of bi-univalent analytic functions on the open unit disc of the complex plane. We deduce estimates for the first two Maclaurin’s coefficients and the Fekete-Sezgö functional inequalities for th...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2022-01-01
|
Series: | Journal of Function Spaces |
Online Access: | http://dx.doi.org/10.1155/2022/6933153 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1832551084276580352 |
---|---|
author | Alaa H. El-Qadeem Saleh A. Saleh Mohamed A. Mamon |
author_facet | Alaa H. El-Qadeem Saleh A. Saleh Mohamed A. Mamon |
author_sort | Alaa H. El-Qadeem |
collection | DOAJ |
description | Motivated by q-calculus, subordination principle, and the second Einstein function, we define two families of bi-univalent analytic functions on the open unit disc of the complex plane. We deduce estimates for the first two Maclaurin’s coefficients and the Fekete-Sezgö functional inequalities for the functions that belong to these families of functions. |
format | Article |
id | doaj-art-e15c428a5c3645a08e314bcc90c09466 |
institution | Kabale University |
issn | 2314-8888 |
language | English |
publishDate | 2022-01-01 |
publisher | Wiley |
record_format | Article |
series | Journal of Function Spaces |
spelling | doaj-art-e15c428a5c3645a08e314bcc90c094662025-02-03T06:05:11ZengWileyJournal of Function Spaces2314-88882022-01-01202210.1155/2022/6933153Bi-Univalent Function Classes Defined by Using a Second Einstein FunctionAlaa H. El-Qadeem0Saleh A. Saleh1Mohamed A. Mamon2Department of MathematicsDepartment of MathematicsDepartment of MathematicsMotivated by q-calculus, subordination principle, and the second Einstein function, we define two families of bi-univalent analytic functions on the open unit disc of the complex plane. We deduce estimates for the first two Maclaurin’s coefficients and the Fekete-Sezgö functional inequalities for the functions that belong to these families of functions.http://dx.doi.org/10.1155/2022/6933153 |
spellingShingle | Alaa H. El-Qadeem Saleh A. Saleh Mohamed A. Mamon Bi-Univalent Function Classes Defined by Using a Second Einstein Function Journal of Function Spaces |
title | Bi-Univalent Function Classes Defined by Using a Second Einstein Function |
title_full | Bi-Univalent Function Classes Defined by Using a Second Einstein Function |
title_fullStr | Bi-Univalent Function Classes Defined by Using a Second Einstein Function |
title_full_unstemmed | Bi-Univalent Function Classes Defined by Using a Second Einstein Function |
title_short | Bi-Univalent Function Classes Defined by Using a Second Einstein Function |
title_sort | bi univalent function classes defined by using a second einstein function |
url | http://dx.doi.org/10.1155/2022/6933153 |
work_keys_str_mv | AT alaahelqadeem biunivalentfunctionclassesdefinedbyusingasecondeinsteinfunction AT salehasaleh biunivalentfunctionclassesdefinedbyusingasecondeinsteinfunction AT mohamedamamon biunivalentfunctionclassesdefinedbyusingasecondeinsteinfunction |