The Theory and Applications of Hölder Widths

We introduce the Hölder width, which measures the best error performance of some recent nonlinear approximation methods, such as deep neural network approximation. Then, we investigate the relationship between Hölder widths and other widths, showing that some Hölder widths are essentially smaller th...

Full description

Saved in:
Bibliographic Details
Main Authors: Man Lu, Peixin Ye
Format: Article
Language:English
Published: MDPI AG 2024-12-01
Series:Axioms
Subjects:
Online Access:https://www.mdpi.com/2075-1680/14/1/25
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832589149774807040
author Man Lu
Peixin Ye
author_facet Man Lu
Peixin Ye
author_sort Man Lu
collection DOAJ
description We introduce the Hölder width, which measures the best error performance of some recent nonlinear approximation methods, such as deep neural network approximation. Then, we investigate the relationship between Hölder widths and other widths, showing that some Hölder widths are essentially smaller than <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>n</mi></mrow></semantics></math></inline-formula>-Kolmogorov widths and linear widths. We also prove that, as the Hölder constants grow with <i>n</i>, the Hölder widths are much smaller than the entropy numbers. The fact that Hölder widths are smaller than the known widths implies that the nonlinear approximation represented by deep neural networks can provide a better approximation order than other existing approximation methods, such as adaptive finite elements and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>n</mi></mrow></semantics></math></inline-formula>-term wavelet approximation. In particular, we show that Hölder widths for Sobolev and Besov classes, induced by deep neural networks, are <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="script">O</mi><mo>(</mo><msup><mi>n</mi><mrow><mo>−</mo><mn>2</mn><mi>s</mi><mo>/</mo><mi>d</mi></mrow></msup><mo>)</mo></mrow></semantics></math></inline-formula> and are much smaller than other known widths and entropy numbers, which are <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="script">O</mi><mo>(</mo><msup><mi>n</mi><mrow><mo>−</mo><mi>s</mi><mo>/</mo><mi>d</mi></mrow></msup><mo>)</mo></mrow></semantics></math></inline-formula>.
format Article
id doaj-art-e0e242b559dc4c11900f5fdd1cdfdf52
institution Kabale University
issn 2075-1680
language English
publishDate 2024-12-01
publisher MDPI AG
record_format Article
series Axioms
spelling doaj-art-e0e242b559dc4c11900f5fdd1cdfdf522025-01-24T13:22:11ZengMDPI AGAxioms2075-16802024-12-011412510.3390/axioms14010025The Theory and Applications of Hölder WidthsMan Lu0Peixin Ye1Department of Applied Mathematics, School of Mathematical Sciences and LPMC, Nankai University, Tianjin 300071, ChinaDepartment of Applied Mathematics, School of Mathematical Sciences and LPMC, Nankai University, Tianjin 300071, ChinaWe introduce the Hölder width, which measures the best error performance of some recent nonlinear approximation methods, such as deep neural network approximation. Then, we investigate the relationship between Hölder widths and other widths, showing that some Hölder widths are essentially smaller than <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>n</mi></mrow></semantics></math></inline-formula>-Kolmogorov widths and linear widths. We also prove that, as the Hölder constants grow with <i>n</i>, the Hölder widths are much smaller than the entropy numbers. The fact that Hölder widths are smaller than the known widths implies that the nonlinear approximation represented by deep neural networks can provide a better approximation order than other existing approximation methods, such as adaptive finite elements and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>n</mi></mrow></semantics></math></inline-formula>-term wavelet approximation. In particular, we show that Hölder widths for Sobolev and Besov classes, induced by deep neural networks, are <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="script">O</mi><mo>(</mo><msup><mi>n</mi><mrow><mo>−</mo><mn>2</mn><mi>s</mi><mo>/</mo><mi>d</mi></mrow></msup><mo>)</mo></mrow></semantics></math></inline-formula> and are much smaller than other known widths and entropy numbers, which are <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="script">O</mi><mo>(</mo><msup><mi>n</mi><mrow><mo>−</mo><mi>s</mi><mo>/</mo><mi>d</mi></mrow></msup><mo>)</mo></mrow></semantics></math></inline-formula>.https://www.mdpi.com/2075-1680/14/1/25Hölder widthsdeep neural networksentropy numbersnonlinear approximation<i>n</i>-Kolmogorov widthsnonlinear (<i>n</i>, <i>N</i>)-widths
spellingShingle Man Lu
Peixin Ye
The Theory and Applications of Hölder Widths
Axioms
Hölder widths
deep neural networks
entropy numbers
nonlinear approximation
<i>n</i>-Kolmogorov widths
nonlinear (<i>n</i>, <i>N</i>)-widths
title The Theory and Applications of Hölder Widths
title_full The Theory and Applications of Hölder Widths
title_fullStr The Theory and Applications of Hölder Widths
title_full_unstemmed The Theory and Applications of Hölder Widths
title_short The Theory and Applications of Hölder Widths
title_sort theory and applications of holder widths
topic Hölder widths
deep neural networks
entropy numbers
nonlinear approximation
<i>n</i>-Kolmogorov widths
nonlinear (<i>n</i>, <i>N</i>)-widths
url https://www.mdpi.com/2075-1680/14/1/25
work_keys_str_mv AT manlu thetheoryandapplicationsofholderwidths
AT peixinye thetheoryandapplicationsofholderwidths
AT manlu theoryandapplicationsofholderwidths
AT peixinye theoryandapplicationsofholderwidths