Dynamic Classifier Auditing by Unsupervised Anomaly Detection Methods: An Application in Packaging Industry Predictive Maintenance

Predictive maintenance in manufacturing industry applications is a challenging research field. Packaging machines are widely used in a large number of logistic companies’ warehouses and must be working uninterruptedly. Traditionally, preventive maintenance strategies have been carried out to improve...

Full description

Saved in:
Bibliographic Details
Main Authors: Fernando Mateo, Joan Vila-Francés, Emilio Soria-Olivas, Marcelino Martínez-Sober, Juan Gómez-Sanchis, Antonio José Serrano-López
Format: Article
Language:English
Published: MDPI AG 2025-01-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/15/2/882
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832589223006306304
author Fernando Mateo
Joan Vila-Francés
Emilio Soria-Olivas
Marcelino Martínez-Sober
Juan Gómez-Sanchis
Antonio José Serrano-López
author_facet Fernando Mateo
Joan Vila-Francés
Emilio Soria-Olivas
Marcelino Martínez-Sober
Juan Gómez-Sanchis
Antonio José Serrano-López
author_sort Fernando Mateo
collection DOAJ
description Predictive maintenance in manufacturing industry applications is a challenging research field. Packaging machines are widely used in a large number of logistic companies’ warehouses and must be working uninterruptedly. Traditionally, preventive maintenance strategies have been carried out to improve the performance of these machines. However, these kinds of policies do not take into account the information provided by the sensors implemented in the machines. This paper presents an expert system for the automatic estimation of work orders to implement predictive maintenance policies for packaging machines. The central innovation lies in a two-stage process: a classifier generates a binary decision on whether a machine requires maintenance, and an unsupervised anomaly detection module subsequently audits the classifier’s probabilistic output to refine and interpret its predictions. By leveraging the classifier to condense sensor data and applying anomaly detection to its output, the system optimizes the decision reliability. Three anomaly detection methods were evaluated: One-Class Support Vector Machine (OCSVM), Minimum Covariance Determinant (MCD), and a majority (hard) voting ensemble of the two. All anomaly detection methods improved the baseline classifier’s performance, with the majority voting ensemble achieving the highest F1 score.
format Article
id doaj-art-dfc93e022e1448f5ae7354e89a40c326
institution Kabale University
issn 2076-3417
language English
publishDate 2025-01-01
publisher MDPI AG
record_format Article
series Applied Sciences
spelling doaj-art-dfc93e022e1448f5ae7354e89a40c3262025-01-24T13:21:11ZengMDPI AGApplied Sciences2076-34172025-01-0115288210.3390/app15020882Dynamic Classifier Auditing by Unsupervised Anomaly Detection Methods: An Application in Packaging Industry Predictive MaintenanceFernando Mateo0Joan Vila-Francés1Emilio Soria-Olivas2Marcelino Martínez-Sober3Juan Gómez-Sanchis4Antonio José Serrano-López5Departamento de Ingeniería Electrónica, Escola Tècnica Superior d’Enginyería (ETSE), Avenida de la Universidad, 46100 Burjassot, SpainDepartamento de Ingeniería Electrónica, Escola Tècnica Superior d’Enginyería (ETSE), Avenida de la Universidad, 46100 Burjassot, SpainDepartamento de Ingeniería Electrónica, Escola Tècnica Superior d’Enginyería (ETSE), Avenida de la Universidad, 46100 Burjassot, SpainDepartamento de Ingeniería Electrónica, Escola Tècnica Superior d’Enginyería (ETSE), Avenida de la Universidad, 46100 Burjassot, SpainDepartamento de Ingeniería Electrónica, Escola Tècnica Superior d’Enginyería (ETSE), Avenida de la Universidad, 46100 Burjassot, SpainDepartamento de Ingeniería Electrónica, Escola Tècnica Superior d’Enginyería (ETSE), Avenida de la Universidad, 46100 Burjassot, SpainPredictive maintenance in manufacturing industry applications is a challenging research field. Packaging machines are widely used in a large number of logistic companies’ warehouses and must be working uninterruptedly. Traditionally, preventive maintenance strategies have been carried out to improve the performance of these machines. However, these kinds of policies do not take into account the information provided by the sensors implemented in the machines. This paper presents an expert system for the automatic estimation of work orders to implement predictive maintenance policies for packaging machines. The central innovation lies in a two-stage process: a classifier generates a binary decision on whether a machine requires maintenance, and an unsupervised anomaly detection module subsequently audits the classifier’s probabilistic output to refine and interpret its predictions. By leveraging the classifier to condense sensor data and applying anomaly detection to its output, the system optimizes the decision reliability. Three anomaly detection methods were evaluated: One-Class Support Vector Machine (OCSVM), Minimum Covariance Determinant (MCD), and a majority (hard) voting ensemble of the two. All anomaly detection methods improved the baseline classifier’s performance, with the majority voting ensemble achieving the highest F1 score.https://www.mdpi.com/2076-3417/15/2/882predictive maintenanceanomaly detectionclassifier auditingpackaging industrymanufacturing systems
spellingShingle Fernando Mateo
Joan Vila-Francés
Emilio Soria-Olivas
Marcelino Martínez-Sober
Juan Gómez-Sanchis
Antonio José Serrano-López
Dynamic Classifier Auditing by Unsupervised Anomaly Detection Methods: An Application in Packaging Industry Predictive Maintenance
Applied Sciences
predictive maintenance
anomaly detection
classifier auditing
packaging industry
manufacturing systems
title Dynamic Classifier Auditing by Unsupervised Anomaly Detection Methods: An Application in Packaging Industry Predictive Maintenance
title_full Dynamic Classifier Auditing by Unsupervised Anomaly Detection Methods: An Application in Packaging Industry Predictive Maintenance
title_fullStr Dynamic Classifier Auditing by Unsupervised Anomaly Detection Methods: An Application in Packaging Industry Predictive Maintenance
title_full_unstemmed Dynamic Classifier Auditing by Unsupervised Anomaly Detection Methods: An Application in Packaging Industry Predictive Maintenance
title_short Dynamic Classifier Auditing by Unsupervised Anomaly Detection Methods: An Application in Packaging Industry Predictive Maintenance
title_sort dynamic classifier auditing by unsupervised anomaly detection methods an application in packaging industry predictive maintenance
topic predictive maintenance
anomaly detection
classifier auditing
packaging industry
manufacturing systems
url https://www.mdpi.com/2076-3417/15/2/882
work_keys_str_mv AT fernandomateo dynamicclassifierauditingbyunsupervisedanomalydetectionmethodsanapplicationinpackagingindustrypredictivemaintenance
AT joanvilafrances dynamicclassifierauditingbyunsupervisedanomalydetectionmethodsanapplicationinpackagingindustrypredictivemaintenance
AT emiliosoriaolivas dynamicclassifierauditingbyunsupervisedanomalydetectionmethodsanapplicationinpackagingindustrypredictivemaintenance
AT marcelinomartinezsober dynamicclassifierauditingbyunsupervisedanomalydetectionmethodsanapplicationinpackagingindustrypredictivemaintenance
AT juangomezsanchis dynamicclassifierauditingbyunsupervisedanomalydetectionmethodsanapplicationinpackagingindustrypredictivemaintenance
AT antoniojoseserranolopez dynamicclassifierauditingbyunsupervisedanomalydetectionmethodsanapplicationinpackagingindustrypredictivemaintenance