Fuzzy Theory-Based Data Placement for Scientific Workflows in Hybrid Cloud Environments

In hybrid cloud environments, reasonable data placement strategies are critical to the efficient execution of scientific workflows. Due to various loads, bandwidth fluctuations, and network congestions between different data centers as well as the dynamics of hybrid cloud environments, the data tran...

Full description

Saved in:
Bibliographic Details
Main Authors: Zheyi Chen, Xu Zhao, Bing Lin
Format: Article
Language:English
Published: Wiley 2020-01-01
Series:Discrete Dynamics in Nature and Society
Online Access:http://dx.doi.org/10.1155/2020/8105145
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In hybrid cloud environments, reasonable data placement strategies are critical to the efficient execution of scientific workflows. Due to various loads, bandwidth fluctuations, and network congestions between different data centers as well as the dynamics of hybrid cloud environments, the data transmission time is uncertain. Thus, it poses huge challenges to the efficient data placement for scientific workflows. However, most of the traditional solutions for data placement focus on deterministic cloud environments, which lead to the excessive data transmission time of scientific workflows. To address this problem, we propose an adaptive discrete particle swarm optimization algorithm based on the fuzzy theory and genetic algorithm operators (DPSO-FGA) to minimize the fuzzy data transmission time of scientific workflows. The DPSO-FGA can rationally place the scientific workflow data while meeting the requirements of data privacy and the capacity limitations of data centers. Simulation results show that the DPSO-FGA can effectively reduce the fuzzy data transmission time of scientific workflows in hybrid cloud environments.
ISSN:1026-0226
1607-887X