Equivalent Locally Martingale Measure for the Deflator Process on Ordered Banach Algebra
This paper aims at determining the measure of Q under necessary and sufficient conditions. The measure is an equivalent measure for identifying the given P such that the process with respect to P is the deflator locally martingale. The martingale and locally martingale measures will coincide for the...
Saved in:
| Main Author: | |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Wiley
2020-01-01
|
| Series: | Journal of Mathematics |
| Online Access: | http://dx.doi.org/10.1155/2020/5785098 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | This paper aims at determining the measure of Q under necessary and sufficient conditions. The measure is an equivalent measure for identifying the given P such that the process with respect to P is the deflator locally martingale. The martingale and locally martingale measures will coincide for the deflator process discrete time. We define s-viable, s-price system, and no locally free lunch in ordered Banach algebra and identify that the s-price system C,π is s-viable if and only a character functional ψC≤π exists. We further demonstrate that no locally free lunch is a necessary and sufficient condition for the equivalent martingale measure Q to exist for the deflator process and the subcharacter ϕ∈Γ such that φC=π. This paper proves the existence of more than one condition and that all conditions are equivalent. |
|---|---|
| ISSN: | 2314-4629 2314-4785 |