On commutativity of one-sided s-unital rings

The following theorem is proved: Let r=r(y)>1, s, and t be non-negative integers. If R is a left s-unital ring satisfies the polynomial identity [xy−xsyrxt,x]=0 for every x,y∈R, then R is commutative. The commutativity of a right s-unital ring satisfying the polynomial identity [xy−yrxt,x]=0 for...

Full description

Saved in:
Bibliographic Details
Main Authors: H. A. S. Abujabal, M. A. Khan
Format: Article
Language:English
Published: Wiley 1992-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Subjects:
Online Access:http://dx.doi.org/10.1155/S0161171292001078
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832556165197725696
author H. A. S. Abujabal
M. A. Khan
author_facet H. A. S. Abujabal
M. A. Khan
author_sort H. A. S. Abujabal
collection DOAJ
description The following theorem is proved: Let r=r(y)>1, s, and t be non-negative integers. If R is a left s-unital ring satisfies the polynomial identity [xy−xsyrxt,x]=0 for every x,y∈R, then R is commutative. The commutativity of a right s-unital ring satisfying the polynomial identity [xy−yrxt,x]=0 for all x,y∈R, is also proved.
format Article
id doaj-art-de70f3f1cee04245a9863b960c49db9d
institution Kabale University
issn 0161-1712
1687-0425
language English
publishDate 1992-01-01
publisher Wiley
record_format Article
series International Journal of Mathematics and Mathematical Sciences
spelling doaj-art-de70f3f1cee04245a9863b960c49db9d2025-02-03T05:46:11ZengWileyInternational Journal of Mathematics and Mathematical Sciences0161-17121687-04251992-01-0115481381810.1155/S0161171292001078On commutativity of one-sided s-unital ringsH. A. S. Abujabal0M. A. Khan1Department of Mathematics, Faculty of Science, King Abdul Aziz University, P. O. Box 31464, Jeddah 21497, Saudi ArabiaDepartment of Mathematics, Faculty of Science, King Abdul Aziz University, P. O. Box 31464, Jeddah 21497, Saudi ArabiaThe following theorem is proved: Let r=r(y)>1, s, and t be non-negative integers. If R is a left s-unital ring satisfies the polynomial identity [xy−xsyrxt,x]=0 for every x,y∈R, then R is commutative. The commutativity of a right s-unital ring satisfying the polynomial identity [xy−yrxt,x]=0 for all x,y∈R, is also proved.http://dx.doi.org/10.1155/S0161171292001078commutativity of ringsleft s-unital ringsring with unitynilpotent elementsnil commutator idealzero-divisorssemi-prime rings.
spellingShingle H. A. S. Abujabal
M. A. Khan
On commutativity of one-sided s-unital rings
International Journal of Mathematics and Mathematical Sciences
commutativity of rings
left s-unital rings
ring with unity
nilpotent elements
nil commutator ideal
zero-divisors
semi-prime rings.
title On commutativity of one-sided s-unital rings
title_full On commutativity of one-sided s-unital rings
title_fullStr On commutativity of one-sided s-unital rings
title_full_unstemmed On commutativity of one-sided s-unital rings
title_short On commutativity of one-sided s-unital rings
title_sort on commutativity of one sided s unital rings
topic commutativity of rings
left s-unital rings
ring with unity
nilpotent elements
nil commutator ideal
zero-divisors
semi-prime rings.
url http://dx.doi.org/10.1155/S0161171292001078
work_keys_str_mv AT hasabujabal oncommutativityofonesidedsunitalrings
AT makhan oncommutativityofonesidedsunitalrings