A Fully Integrated 0.48 THz FMCW Radar Sensor in a SiGe Technology

The THz gap has been a significant research objective for photonics and electronics for decades. This work introduces a fully integrated frequency modulated continuous wave (FMCW) radar sensor with a center frequency of 0.48 THz, realized in a silicon-germanium (SiGe) technology. The sensor consists...

Full description

Saved in:
Bibliographic Details
Main Authors: Florian Vogelsang, Jonathan Bott, David Starke, Marc Hamme, Benedikt Sievert, Holger Rucker, Nils Pohl
Format: Article
Language:English
Published: IEEE 2025-01-01
Series:IEEE Journal of Microwaves
Subjects:
Online Access:https://ieeexplore.ieee.org/document/10959113/
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The THz gap has been a significant research objective for photonics and electronics for decades. This work introduces a fully integrated frequency modulated continuous wave (FMCW) radar sensor with a center frequency of 0.48 THz, realized in a silicon-germanium (SiGe) technology. The sensor consists of a THz MMIC integrated onto a front-end printed circuit board (PCB) with FR4 substrate used for frequency synthesis and IF signal amplification. A dielectric polytetrafluoroethylene (PTFE) lens is mounted above the MMIC to act as transmitter (Tx) and receiver (Rx) lens as well as a physical protection for the bond wires of the MMIC. A back-end PCB generates the supply voltages and control signals, and its analog-digital-converter (ADC) samples the IF signal. The whole sensor is just 4.9 cm by 4.3 cm in size and is cost-efficient due to its design with FR4 PCBs. The MMIC reaches an output power of up to <inline-formula><tex-math notation="LaTeX">$-9$</tex-math></inline-formula> dBm. In FMCW operation with the full sensor, a tuning range of 49 GHz is reached along an equivalent isotropic radiated power (EIRP) of up to 22 dBm. Distance measurements were successfully tested for distances of up to 5 m, and a radiation pattern is presented. In summary, this article demonstrates the potential of SiGe technology in the THz range for applications like localization, material characterization, and communication.
ISSN:2692-8388