Quantum Testing of Recommender Algorithms on GPU-Based Quantum Simulators

This study explores the application of quantum computing in asset management, focusing on the use of the Quantum Approximate Optimization Algorithm (QAOA) to solve specific classes of financial asset recommendation problems. While quantum computing holds promise for combinatorial optimization tasks,...

Full description

Saved in:
Bibliographic Details
Main Authors: Chenxi Liu, W. Bernard Lee, Anthony G. Constantinides
Format: Article
Language:English
Published: MDPI AG 2025-04-01
Series:Computers
Subjects:
Online Access:https://www.mdpi.com/2073-431X/14/4/137
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study explores the application of quantum computing in asset management, focusing on the use of the Quantum Approximate Optimization Algorithm (QAOA) to solve specific classes of financial asset recommendation problems. While quantum computing holds promise for combinatorial optimization tasks, its application to portfolio management faces significant challenges in scalability for practical implementations. In this work, we model the problem using a graph representation where nodes represent investors, and edges reflect significant similarities in asset choices. We test the proposed method using quantum simulators, including cuQuantum, Cirq-GPU, and Cirq with IonQ, and compare the performance of quantum optimization against classical brute-force methods. Our results suggest that quantum algorithms may offer computational advantages for certain use cases, though classical heuristics also provide competitive performance for smaller datasets. This study contributes to the ongoing investigation into the potential of quantum computing for real-time financial decision-making, providing insights into both its applicability and limitations in asset management for larger and more complex investor datasets.
ISSN:2073-431X