Mathematical Modelling of RF Plasma Flow at Low Pressures with 3D Electromagnetic Field

In this study, a hybrid mathematical model of a low-pressure RF plasma jet in transition mode between continuum and free molecular flow at a Knudsen number of 8·10−3 ≤ Kn ≤ 7·10−2 for a carrying gas is described. The model takes electrons, ions, metastable atoms, and potential and curl electromagnet...

Full description

Saved in:
Bibliographic Details
Main Authors: A. Yu Shemakhin, V. S. Zheltukhin
Format: Article
Language:English
Published: Wiley 2019-01-01
Series:Advances in Materials Science and Engineering
Online Access:http://dx.doi.org/10.1155/2019/7120217
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832556302145945600
author A. Yu Shemakhin
V. S. Zheltukhin
author_facet A. Yu Shemakhin
V. S. Zheltukhin
author_sort A. Yu Shemakhin
collection DOAJ
description In this study, a hybrid mathematical model of a low-pressure RF plasma jet in transition mode between continuum and free molecular flow at a Knudsen number of 8·10−3 ≤ Kn ≤ 7·10−2 for a carrying gas is described. The model takes electrons, ions, metastable atoms, and potential and curl electromagnetic fields into account. The model is based on both a statistical approach for the atoms in the ground state and a continuum model for other components. The results of plasma flow calculations in an undisturbed jet are described. The distributions of the electrodynamic and electrostatic parts of the electric field are given. It has been observed that the plasma jet has a layered structure along the stream: a positive charge region is formed at the beginning of the jet, followed by a negative charge region, and then a positive one again. The reason for the formation of a layered structure is the fast flow expansion when the plasma inflows into the vacuum and the difference in electron and ion pulse.
format Article
id doaj-art-db337a0edcf24ba8b4512a860e270592
institution Kabale University
issn 1687-8434
1687-8442
language English
publishDate 2019-01-01
publisher Wiley
record_format Article
series Advances in Materials Science and Engineering
spelling doaj-art-db337a0edcf24ba8b4512a860e2705922025-02-03T05:45:47ZengWileyAdvances in Materials Science and Engineering1687-84341687-84422019-01-01201910.1155/2019/71202177120217Mathematical Modelling of RF Plasma Flow at Low Pressures with 3D Electromagnetic FieldA. Yu Shemakhin0V. S. Zheltukhin1Kazan Federal University, Kazan 420008, RussiaKazan Federal University, Kazan 420008, RussiaIn this study, a hybrid mathematical model of a low-pressure RF plasma jet in transition mode between continuum and free molecular flow at a Knudsen number of 8·10−3 ≤ Kn ≤ 7·10−2 for a carrying gas is described. The model takes electrons, ions, metastable atoms, and potential and curl electromagnetic fields into account. The model is based on both a statistical approach for the atoms in the ground state and a continuum model for other components. The results of plasma flow calculations in an undisturbed jet are described. The distributions of the electrodynamic and electrostatic parts of the electric field are given. It has been observed that the plasma jet has a layered structure along the stream: a positive charge region is formed at the beginning of the jet, followed by a negative charge region, and then a positive one again. The reason for the formation of a layered structure is the fast flow expansion when the plasma inflows into the vacuum and the difference in electron and ion pulse.http://dx.doi.org/10.1155/2019/7120217
spellingShingle A. Yu Shemakhin
V. S. Zheltukhin
Mathematical Modelling of RF Plasma Flow at Low Pressures with 3D Electromagnetic Field
Advances in Materials Science and Engineering
title Mathematical Modelling of RF Plasma Flow at Low Pressures with 3D Electromagnetic Field
title_full Mathematical Modelling of RF Plasma Flow at Low Pressures with 3D Electromagnetic Field
title_fullStr Mathematical Modelling of RF Plasma Flow at Low Pressures with 3D Electromagnetic Field
title_full_unstemmed Mathematical Modelling of RF Plasma Flow at Low Pressures with 3D Electromagnetic Field
title_short Mathematical Modelling of RF Plasma Flow at Low Pressures with 3D Electromagnetic Field
title_sort mathematical modelling of rf plasma flow at low pressures with 3d electromagnetic field
url http://dx.doi.org/10.1155/2019/7120217
work_keys_str_mv AT ayushemakhin mathematicalmodellingofrfplasmaflowatlowpressureswith3delectromagneticfield
AT vszheltukhin mathematicalmodellingofrfplasmaflowatlowpressureswith3delectromagneticfield