Sodium-Intercalated Vanadium Oxide Coated on Carbon Cloth for Electrode Materials in High-Performance Aqueous Zinc-Ion Batteries
In this work, novel sodium-intercalated vanadium oxide nanowire electrode materials (NaXV@CC) were successfully designed as cathode materials for Aqueous Zinc-Ion Batteries (AZIBs) through a two-step electrochemical process. The optimized electrode material, Na30V@CC, exhibited superior capacity, ex...
Saved in:
| Main Authors: | , , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-05-01
|
| Series: | Molecules |
| Subjects: | |
| Online Access: | https://www.mdpi.com/1420-3049/30/9/2074 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | In this work, novel sodium-intercalated vanadium oxide nanowire electrode materials (NaXV@CC) were successfully designed as cathode materials for Aqueous Zinc-Ion Batteries (AZIBs) through a two-step electrochemical process. The optimized electrode material, Na30V@CC, exhibited superior capacity, excellent rate capability, and outstanding stability. The intercalation of sodium ions into the nanowire lattice induced a significant transformation in the overall nanostructure, leading to altered nanowire morphology. This unique structural design provided abundant active sites and efficient ion transport pathways, thereby enhancing the overall electrochemical performance. The charging and discharging capacities were 343.3 and 330.4 mAh·g<sup>−1</sup> at 0.2 A·g<sup>−1</sup>, respectively, and the capacity was maintained at 90 mAh·g<sup>−1</sup> at 8 A·g<sup>−1</sup>. The battery demonstrated exceptional capacity retention over 3000 cycles at 5 A·g<sup>−1</sup>, highlighting its long-term electrochemical stability. Moreover, the overall battery reaction was governed by a combination of diffusion and surface processes. The Na30V@CC battery system demonstrated reduced reaction impedance and improved zinc ion diffusion rates. This study offers valuable insights into enhancing the electrochemical performance of vanadium-based cathodes in AZIBs. |
|---|---|
| ISSN: | 1420-3049 |