Stability of a Functional Equation Deriving from Quadratic and Additive Functions in Non-Archimedean Normed Spaces
We obtain the general solution of the generalized mixed additive and quadratic functional equation fx+my+fx−my=2fx−2m2fy+m2f2y, m is even; fx+y+fx−y−2m2−1fy+m2−1f2y, m is odd, for a positive integer m. We establish the Hyers-Ulam stability for these functional equations in non-Archimedean normed spa...
Saved in:
| Main Authors: | , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Wiley
2013-01-01
|
| Series: | Abstract and Applied Analysis |
| Online Access: | http://dx.doi.org/10.1155/2013/198018 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Be the first to leave a comment!