Machine learning approaches for predicting and validating mechanical properties of Mg rare earth alloys for light weight applications

In this work, we have attempted to predict the mechanical behaviour of light weight Mg-based rare earth alloys fabricated through different mechanical and thermal processes. Our approach involves machine learning techniques across a range of different thermomechanical processes such as solution trea...

Full description

Saved in:
Bibliographic Details
Main Authors: Sandeep Jain, Ayan Bhowmik, Jaichan Lee
Format: Article
Language:English
Published: Taylor & Francis Group 2025-12-01
Series:Science and Technology of Advanced Materials
Subjects:
Online Access:https://www.tandfonline.com/doi/10.1080/14686996.2025.2449811
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this work, we have attempted to predict the mechanical behaviour of light weight Mg-based rare earth alloys fabricated through different mechanical and thermal processes. Our approach involves machine learning techniques across a range of different thermomechanical processes such as solution treatment, homogenization, extrusion and aging behaviour. The effectiveness of machine learning models is evaluated using performance metrics, including Coefficient of determination (R2), Mean Absolute Error (MAE) and Root Mean Square Error (RMSE). After modeling and selection of best model, the mechanical behaviour of new alloys was predicted in terms of ultimate tensile strength, yield strength and total elongation. The predicted results highlight the superior predictive accuracy of the K-Nearest Neighbors (KNN) machine learning model, demonstrating its better performance metrics compared with other machine learning approaches. This model has been found to predict the material properties with an effective evaluation matrix (R2 = 0.955, MAE = 3.4% and RMSE = 4.5%).
ISSN:1468-6996
1878-5514