TOPOLOGICAL INVARIANTS AND MILNOR FIBRE FOR \(\mathcal{A}\)-FINITE GERMS \(C^2\) to \(C^3\)

This note is the observation that a simple combination of known results shows that the usual analytic invariants of a finitely determined multi-germ \(f : (C^2 , S) → (C^3 , 0) \)—namely, the image Milnor number , the number of cross-caps and triple points, \(C\) and \(T\), and the Milnor number \(μ...

Full description

Saved in:
Bibliographic Details
Main Authors: Javier Fernández De Bobadilla, Guillermo Peñafort-Sanchis, José Edson Sampaio
Format: Article
Language:English
Published: Dalat University 2022-01-01
Series:Tạp chí Khoa học Đại học Đà Lạt
Subjects:
Online Access:https://tckh.dlu.edu.vn/index.php/tckhdhdl/article/view/864
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832569080517754880
author Javier Fernández De Bobadilla
Guillermo Peñafort-Sanchis
José Edson Sampaio
author_facet Javier Fernández De Bobadilla
Guillermo Peñafort-Sanchis
José Edson Sampaio
author_sort Javier Fernández De Bobadilla
collection DOAJ
description This note is the observation that a simple combination of known results shows that the usual analytic invariants of a finitely determined multi-germ \(f : (C^2 , S) → (C^3 , 0) \)—namely, the image Milnor number , the number of cross-caps and triple points, \(C\) and \(T\), and the Milnor number \(μ(Σ)\) of the curve of double points in the target—depend only on the embedded topological type of the image of \(f\). As a consequence, one obtains the topological invariance of the sign-refined Smale invariant for immersions \(j : S^3 \looparrowright  S^5\) associated to finitely determined map germs \((C^2 , 0) → (C^3 , 0)\).
format Article
id doaj-art-d90fab783e7d42b297de989b29a9121a
institution Kabale University
issn 0866-787X
language English
publishDate 2022-01-01
publisher Dalat University
record_format Article
series Tạp chí Khoa học Đại học Đà Lạt
spelling doaj-art-d90fab783e7d42b297de989b29a9121a2025-02-02T23:31:55ZengDalat UniversityTạp chí Khoa học Đại học Đà Lạt0866-787X2022-01-01192510.37569/DalatUniversity.12.2.864(2022)622TOPOLOGICAL INVARIANTS AND MILNOR FIBRE FOR \(\mathcal{A}\)-FINITE GERMS \(C^2\) to \(C^3\)Javier Fernández De Bobadilla0Guillermo Peñafort-Sanchis1José Edson Sampaio2Basque Foundation for ScienceMazarredo, BilbaoUniversidade Federal do Ceará, Rua Campus do PiciThis note is the observation that a simple combination of known results shows that the usual analytic invariants of a finitely determined multi-germ \(f : (C^2 , S) → (C^3 , 0) \)—namely, the image Milnor number , the number of cross-caps and triple points, \(C\) and \(T\), and the Milnor number \(μ(Σ)\) of the curve of double points in the target—depend only on the embedded topological type of the image of \(f\). As a consequence, one obtains the topological invariance of the sign-refined Smale invariant for immersions \(j : S^3 \looparrowright  S^5\) associated to finitely determined map germs \((C^2 , 0) → (C^3 , 0)\).https://tckh.dlu.edu.vn/index.php/tckhdhdl/article/view/864milnor fibertopological invariance.
spellingShingle Javier Fernández De Bobadilla
Guillermo Peñafort-Sanchis
José Edson Sampaio
TOPOLOGICAL INVARIANTS AND MILNOR FIBRE FOR \(\mathcal{A}\)-FINITE GERMS \(C^2\) to \(C^3\)
Tạp chí Khoa học Đại học Đà Lạt
milnor fiber
topological invariance.
title TOPOLOGICAL INVARIANTS AND MILNOR FIBRE FOR \(\mathcal{A}\)-FINITE GERMS \(C^2\) to \(C^3\)
title_full TOPOLOGICAL INVARIANTS AND MILNOR FIBRE FOR \(\mathcal{A}\)-FINITE GERMS \(C^2\) to \(C^3\)
title_fullStr TOPOLOGICAL INVARIANTS AND MILNOR FIBRE FOR \(\mathcal{A}\)-FINITE GERMS \(C^2\) to \(C^3\)
title_full_unstemmed TOPOLOGICAL INVARIANTS AND MILNOR FIBRE FOR \(\mathcal{A}\)-FINITE GERMS \(C^2\) to \(C^3\)
title_short TOPOLOGICAL INVARIANTS AND MILNOR FIBRE FOR \(\mathcal{A}\)-FINITE GERMS \(C^2\) to \(C^3\)
title_sort topological invariants and milnor fibre for mathcal a finite germs c 2 to c 3
topic milnor fiber
topological invariance.
url https://tckh.dlu.edu.vn/index.php/tckhdhdl/article/view/864
work_keys_str_mv AT javierfernandezdebobadilla topologicalinvariantsandmilnorfibreformathcalafinitegermsc2toc3
AT guillermopenafortsanchis topologicalinvariantsandmilnorfibreformathcalafinitegermsc2toc3
AT joseedsonsampaio topologicalinvariantsandmilnorfibreformathcalafinitegermsc2toc3