Dual-Band High Q-Factor Complementary Split-Ring Resonators Using Substrate Integrated Waveguide Method and Their Applications

In modern microwave telecommunication systems, especially in low phase noise oscillators, there is a need for resonators with low insertion losses and high Q-factor. More specifically, it is of high interest to design resonators with high group delay. In this paper, three novel dual-band complementa...

Full description

Saved in:
Bibliographic Details
Main Authors: Mehdi Hamidkhani, Rasool Sadeghi, Mohamadreza Karimi
Format: Article
Language:English
Published: Wiley 2019-01-01
Series:Journal of Electrical and Computer Engineering
Online Access:http://dx.doi.org/10.1155/2019/6287970
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In modern microwave telecommunication systems, especially in low phase noise oscillators, there is a need for resonators with low insertion losses and high Q-factor. More specifically, it is of high interest to design resonators with high group delay. In this paper, three novel dual-band complementary split-ring resonators (CSRRs) featuring high group delay etched on the waveguide surface by using substrate integrated waveguides are investigated and proposed. They are designed for a frequency range of 4.5–5.5 GHz. Group delay rates for the first, second, and third resonators were approximated as much as 23 ns, 293 ns, and 90 ns, respectively. We also proposed a new practical method to develop a wide tuning range SIW CSRR cavity resonator with a small tuning voltage in the second resonator, which leads to about 19% and 1% of tuning frequency band in the first and second bands, respectively. Finally, some of their applications in the design of filter, diplexer, and low phase noise oscillator will be investigated.
ISSN:2090-0147
2090-0155