Development of a Coupled Code for Steady-State Analysis of the Graphite-Moderated Channel Type Molten Salt Reactor

The molten salt reactor (MSR) is one of the six advanced reactor concepts selected by Generation IV International Forum (GIF) because of its inherent safety and the promising capabilities of TRU transmutation and Th-U breeding. In this study, a three-dimensional thermal-hydraulic model (3DTH) is dev...

Full description

Saved in:
Bibliographic Details
Main Authors: Long He, Cheng-Gang Yu, Wei Guo, Ye Dai, Hai-Ling Wang, Xiang-Zhou Cai
Format: Article
Language:English
Published: Wiley 2018-01-01
Series:Science and Technology of Nuclear Installations
Online Access:http://dx.doi.org/10.1155/2018/4053254
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The molten salt reactor (MSR) is one of the six advanced reactor concepts selected by Generation IV International Forum (GIF) because of its inherent safety and the promising capabilities of TRU transmutation and Th-U breeding. In this study, a three-dimensional thermal-hydraulic model (3DTH) is developed for evaluating the steady-state performance of the graphite-moderated channel type MSR. The coupled code is developed by exchanging the power distribution, temperature, and fuel density distribution between SCALE and 3DTH. Firstly, the thermal-hydraulic model of the coupled code is validated by RELAP5 code. Then, the mass flow distribution, temperature field, keff, and power density distribution for a conceptual design of the 2MWt experimental molten salt reactor are calculated and analyzed by the coupled code under both normal operating situation and the central fuel assembly partly blocked situation. The simulated results are conductive to facilitate the understanding of the steady behavior of the graphite-moderated channel type MSR.
ISSN:1687-6075
1687-6083