SER Performance of Enhanced Spatial Multiplexing Codes with ZF/MRC Receiver in Time-Varying Rayleigh Fading Channels
We propose enhanced spatial multiplexing codes (E-SMCs) to enable various encoding rates. The symbol error rate (SER) performance of the E-SMC is investigated when zero-forcing (ZF) and maximal-ratio combining (MRC) techniques are used at a receiver. The proposed E-SMC allows a transmitted symbol to...
Saved in:
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2014-01-01
|
Series: | The Scientific World Journal |
Online Access: | http://dx.doi.org/10.1155/2014/537272 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We propose enhanced spatial multiplexing codes (E-SMCs) to enable various encoding rates. The symbol error rate (SER) performance of the E-SMC is investigated when zero-forcing (ZF) and maximal-ratio combining (MRC) techniques are used at a receiver. The proposed E-SMC allows a transmitted symbol to be repeated over time to achieve further diversity gain at the cost of the encoding rate. With the spatial correlation between transmit antennas, SER equations for M-ary QAM and PSK constellations are derived by using a moment generating function (MGF) approximation of a signal-to-noise ratio (SNR), based on the assumption of independent zero-forced SNRs. Analytic and simulated results are compared for time-varying and spatially correlated Rayleigh fading channels that are modelled as first-order Markovian channels. Furthermore, we can find an optimal block length for the E-SMC that meets a required SER. |
---|---|
ISSN: | 2356-6140 1537-744X |